Alle Publikationen sortiert nach Aktualität

Partalidou, E., Passali, T., Zerva, C., Tsoumakas, G. und Ananiadou, S., Towards Trustworthy Summarization of Cardiovascular Articles: A Factuality-and-Uncertainty-Aware Biomedical LLM Approach, in: Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), Seiten 200–207, 2025
[DOI]
[URL]
Yano, K., Miwa, M. und Ananiadou, S., IRIS: Rapid Curation Framework for Iterative Improvement of Noisy Named Entity Annotations, in: Proceedings of the International Conference on Applications of Natural Language to Information Systems, Seiten 58-69, 2025
[DOI]
[URL]
Liu, Z., Zhang, X., Yang, K, Xie, Q., Huang, J. und Ananiadou, S., FMDLlama: Financial Misinformation Detection Based on Large Language Models, in: Proceedings of the ACM on Web Conference 2025, Seiten 1153 - 1157, 2025
[DOI]
[URL]
Yang, K, Liu, Z., Xie, Q., Huang, J., Min, E. und Ananiadou, S., Selective Preference Optimization via Token-Level Reward Function Estimation, in: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP), Seiten 7032–7056, 2025
[DOI]
[URL]
Zhang, X., Wei, Q., Zhu, Y., Wu, F. und Ananiadou, S., THCM-CAL: Temporal-Hierarchical Causal Modelling with Conformal Calibration for Clinical Risk Prediction, in: Findings of the Association for Computational Linguistics: EMNLP 2024, Seiten 916–928, 2025
[DOI]
[URL]
Soufleri, E. und Ananiadou, S., Enhancing Stress Detection on Social Media Through Multi-Modal Fusion of Text and Synthesized Visuals, in: Proceedings of the 24th Workshop on Biomedical Language Processing (BioNLP), Seiten 34–43, 2025
[DOI]
[URL]
Yu, Z. und Ananiadou, S., Locate-then-Merge: Neuron-Level Parameter Fusion for Mitigating Catastrophic Forgetting in Multimodal LLMs, in: Findings of the Association for Computational Linguistics: EMNLP 2024, Seiten 7065–7078, 2025
[DOI]
[URL]
Liu, Z., Thompson, P., Rong, J. und Ananiadou, S., ConspEmoLLM-v2: A robust and stable model to detect sentiment-transformed conspiracy theories, in: Proceedings of the 14th Conference on Prestigious Applications of Intelligent Systems (PAIS-2025), Seiten 5311 - 5318, 2025
[URL]
Kabir, M., Tahsin, T. und Ananiadou, S., From n-gram to Attention: How Model Architectures Learn and Propagate Bias in Language Modelin, in: Findings of the Association for Computational Linguistics: EMNLP 2025, Seiten 18478–18498, 2025
[DOI]
[URL]
Zhang, X., Wei, Q., Zhu, Y., Zhang, L., Zhou, D. und Ananiadou, S., SynGraph: A Dynamic Graph-LLM Synthesis Framework for Sparse Streaming User Sentiment Modeling, in: Findings of the Association for Computational Linguistics: ACL 2025, Seiten 16338–16356, 2025
[DOI]
[URL]