All publications sorted by journal and type


Publications of type Incollection


2004

Spasić, I., Nenadić, G. and Ananiadou, S., Learning to Classify Biomedical Terms through Literature Mining and Genetic Algorithms, in: Intelligent Data Engineering and Automated Learning – IDEAL 2004, pages 345--351, Springer-Verlag, 2004
attachment

Publications of type Inproceedings


In Press

Yu, Z., Belinkov, Y. and Ananiadou, S., Back Attention: Understanding and Enhancing Multi-Hop Reasoning in Large Language Models, in: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP), In Press
[URL]
Kabir, M., Abrar, A. and Ananiadou, S., Break the Checkbox: Challenging Closed-Style Evaluations of Cultural Alignment in LLMs, in: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP), In Press
[URL]
Liu, Z., Thompson, P., Rong, J. and Ananiadou, S., ConspEmoLLM-v2: A robust and stable model to detect sentiment-transformed conspiracy theories, in: Proceedings of the 14th Conference on Prestigious Applications of Intelligent Systems (PAIS-2025), In Press
[URL]
Kabir, M., Tahsin, T. and Ananiadou, S., From n-gram to Attention: How Model Architectures Learn and Propagate Bias in Language Modelin, in: Findings of the Association for Computational Linguistics: EMNLP 2025, In Press
[URL]
Yu, Z. and Ananiadou, S., Locate-then-Merge: Neuron-Level Parameter Fusion for Mitigating Catastrophic Forgetting in Multimodal LLMs, in: Findings of the Association for Computational Linguistics: EMNLP 2024, In Press
[URL]
Peng, X., Papadopoulos, T., Soufleri, E., Giannouris, P., Xiang, R., Wang, Y., Qian, L., Huang, J., Xie, Q. and Ananiadou, S., Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance, in: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP), In Press
[URL]
Yang, K, Liu, Z., Xie, Q., Huang, J., Min, E. and Ananiadou, S., Selective Preference Optimization via Token-Level Reward Function Estimation, in: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP), In Press
[URL]
Zhang, X., Wei, Q., Zhu, Y., Wu, F. and Ananiadou, S., THCM-CAL: Temporal-Hierarchical Causal Modelling with Conformal Calibration for Clinical Risk Prediction, in: Findings of the Association for Computational Linguistics: EMNLP 2024, In Press
[URL]

2025

Yano, K., Luo, Z., Huang, J., Xie, Q., Asada, M., Yuan, C., Yang, K, Miwa, M., Ananiadou, S. and Tsujii, J., ELAINE-medLLM: Lightweight English Japanese Chinese Trilingual Large Language Model for Bio-medical Domain, in: Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025), pages 4670–4688, 2025
[URL]
Luo, Z., Yuan, C., Xie, Q. and Ananiadou, S., EMPEC: A Comprehensive Benchmark for Evaluating Large Language Models Across Diverse Healthcare Professions, in: Findings of the Association for Computational Linguistics: ACL 2025, pages 9945–9958, 2025
[DOI]
[URL]
Soufleri, E. and Ananiadou, S., Enhancing Stress Detection on Social Media Through Multi-Modal Fusion of Text and Synthesized Visuals, in: Proceedings of the 24th Workshop on Biomedical Language Processing (BioNLP), pages 34–43, 2025
[DOI]
[URL]
Liu, Z., Wang, K., Bao, Z., Zhang, X., Dong, J., Yang, K, Kabir, M., Giannouris, P., Xing, R., Park, S., Kim, J., Li, D., Xie, Q. and Ananiadou, S., FinNLP-FNP-LLMFinLegal-2025 Shared Task: Financial Misinformation Detection Challenge Task, in: Proceedings of the Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal), pages 271–276, 2025
[URL]
Zhang, X., Wei, Q., Zhu, Y., Zhang, L., Zhou, D. and Ananiadou, S., SynGraph: A Dynamic Graph-LLM Synthesis Framework for Sparse Streaming User Sentiment Modeling, in: Findings of the Association for Computational Linguistics: ACL 2025, pages 16338–16356, 2025
[DOI]
[URL]

2024

Yuan, C., Xie, Q., Huang, J. and Ananiadou, S., Back to the Future: Towards Explainable Temporal Reasoning with Large Language Models, in: Proceedings of the ACM on Web Conference 2024 (WWW '24), pages 1963 - 1974, 2024
[URL]
Liu, Z., Liu, B, Thompson, P., Yang, K and Ananiadou, S., ConspEmoLLM: Conspiracy Theory Detection Using an Emotion-Based Large Language Model, in: Proceedings of the 13th International Conference on Prestigious Applications of Intelligent Systems (PAIS-2024), pages 4649 - 4656, 2024
[DOI]
[URL]
Zhang, X., Xiang, R., Yuan, C., Feng, D., Han, W., Lopez-Lira, A., Liu, X. -Y., Ananiadou, S., Peng, M., Huang, J. and Xie, Q., Dólares or Dollars? Unraveling the Bilingual Prowess of Financial LLMs Between Spanish and English, in: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24), pages 6236-6246, 2024
[DOI]
[URL]
Xie, Q., Huang, J., Li, D., Chen, Z., Xiang, R., Xiao, M., Yu, Y., Somasundaram, V., Yang, K, Yuan, C., Luo, Z., Liu, Z., He, Y., Jiang, Y., Li, H., Feng, D., Liu, X. -Y., Wang, B., Wang, H., Lai, Y., Suchow, J., Lopez-Lira, A., Peng, M. and Ananiadou, S., FinNLP-AgentScen-2024 Shared Task: Financial Challenges in Large Language Models - FinLLMs, in: Proceedings of the Eighth Financial Technology and Natural Language Processing and the 1st Agent AI for Scenario Planning, pages 119- 126, 2024
[URL]
Wang, Y., Feng, D., Dai, Y., Chen, Z., Huang, J., Ananiadou, S., Xie, Q. and Wang, H., HARMONIC: Harnessing LLMs for Tabular Data Synthesis and Privacy Protection, in: Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024
[URL]
Yu, Z. and Ananiadou, S., How do Large Language Models Learn In-Context? Query and Key Matrices of In-Context Heads are Two Towers for Metric Learning, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3281–3292, 2024
[DOI]
[URL]
Yu, Z. and Ananiadou, S., Interpreting Arithmetic Mechanism in Large Language Models through Comparative Neuron Analysis, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3293–3306, 2024
[DOI]
[URL]