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Abstract. We present an approach to classification of biomedical terms
based on the information acquired automatically from the corpus of rel-
evant literature. The learning phase consists of two stages: acquisition
of terminologically relevant contextual patterns (CPs) and selection of
classes that apply to terms used with these patterns. CPs represent a
generalisation of similar term contexts in the form of regular expressions
containing lexical, syntactic and terminological information. The most
probable classes for the training terms co-occurring with the statistically
relevant CP are learned by a genetic algorithm. Term classification is
based on the learnt results. First, each term is associated with the most
frequently co-occurring CP. Classes attached to such CP are initially sug-
gested as the term’s potential classes. Then, the term is finally mapped
to the most similar suggested class.

1 Introduction

The biomedical literature has been rapidly expanding due to the new discoveries
reported almost on a daily basis [1]. The biomedical articles are swamped by
newly coined terms denoting newly identified compounds, genes, drugs, reac-
tions, etc. The knowledge repositories need to efficiently adapt to the advent of
new terms by assorting them into appropriate classes in order to allow biomed-
ical experts to easily acquire, analyse and visualise information of interest. Due
to an enormous number of terms and the complex structure of the terminology,1

manual update approaches are inevitably inflicted by inefficiency and inconsis-
tencies. Thus, reliable term recognition and classification methods are absolutely
essential as means of support for automatic maintenance of large knowledge
repositories.

Still, term classification in the biomedical domain is by no means straightfor-
ward to implement, as the naming conventions do not necessarily systematically

1 For example, UMLS (www.nlm.nih.gov/research/umls/) contains more than 2.8 mil-
lion terms assorted into 135 classes.



reflect terms’ functional properties. Hence, the contexts in which terms are used
need to be analysed. In most of the approaches exploiting contextual features,
contexts have been typically represented using ”bag-of-words” approach (e.g. [4])
or pre-defined sets of patterns (e.g. [6]). Contextual features can be used to clas-
sify terms by methods such as nearest neighbour, maximum entropy modelling,
naive Bayes classification, decision trees, support vector machines, etc.

In our approach, important contextual features are learnt in the form of
generalised regular expressions which describe the morpho-syntactic structure
and lexico-semantic content of term contexts. The classes that are compatible
with specific patterns are learnt by a genetic algorithm. The nearest neighbour
algorithm (based on the similarity measure that compares lexical, syntactic and
contextual features) is applied to these classes in order to perform classification.

The remainder of the paper is organised as follows. In Section 2 we describe
the acquisition of contextual patterns, while Section 3 gives details on the genetic
algorithm used to learn the most probable classes for terms used with these
patterns. The procedure for classification of terms based on the acquired patterns
and the corresponding classes is given in Section 4. Finally, in Section 5 we
describe the evaluation strategy and provide the results, after which we conclude
the paper.

2 Mining the Literature for Contextual Features

Our approach to the extraction of contextual features is based on automatic
pattern mining, whose aim is to automatically identify, normalise and harvest
the contextual patterns providing the most relevant information on the terms
they surround. A contextual pattern (CP) is defined as a generalised regular
expression describing the structure of a term’s context. We considered two types
of context constituents: morpho-syntactic (e.g. noun phrases, prepositions, etc.)
and terminological (i.e. term occurrences). Term contexts are generalised by
mapping the constituents to their categories. In addition, lemmatised lexical
forms can be used to instantiate specific constituents in order to specify their
semantic content, e.g.:

V PREP TERM NP PREP
V PREP TERM:nuclear receptor NP PREP:of
V:belong PREP:to TERM:nuclear receptor NP:superfamily PREP:of

The main challenge is to ”optimise” CPs so as to provide a suitable bal-
ance between their generality and partiality towards specific classes of terms.
With this in mind, the categories that are not particularly significant in pro-
viding useful contextual information (e.g. determiners, linking words, etc.) [6]
can be safely removed from the CPs. On the other hand, categories with high
information content (e.g. terms, verbs, etc.) need to be instantiated, because
they provide good discriminatory features for term comparison. The generality
of a CP is also affected by its length. While the decisions about the categories
and instantiation are manually encoded based on the existing observations, the



problem of variable pattern lengths is addressed automatically. The CP-value
measure is used to determine the statistical relevance of CPs and indirectly the
appropriate length of individual CPs.2

First, for each term occurrence the maximal left context is extracted without
crossing the sentence boundaries. The results of morpho-syntactic and termino-
logical processing encoded in the XML-tagged corpus are used to automatically
discard some categories, remove their lexical content or to keep the lemmatised
lexical form (as discusses above). The remainder represents an initially selected
left CP. Iterative removal of the left-most constituent until the minimal CP
length3 is reached results in a number of shorter left CPs.

If a CP does not occur nested inside other CPs, then its CP-value is pro-
portional to its frequency and length. Otherwise, we take into account both the
absolute frequency (positive impact) and the frequency of nested occurrences
(small negative impact), thus measuring the frequency of its independent oc-
currences. Further, since a CP is more independent if it appears nested inside
a larger number of different CPs, we reduce the negative impact by dividing it
with the number of such CPs. Formally:

CP (p) =

{
ln |p| · f(p) , if p is never nested
ln |p| ·

(
f(p)− 1

|Tp|
∑

q∈Tp
f(q)

)
, otherwise

where f(p) is the absolute frequency of the CP p, |p| is its length, and Tp is a set
of all CPs that contain p. CPs with high CP-values are usually general patterns,
the ones with low CP-values typically are rare patterns, while the middle-ranked
CPs represent relevant domain-specific patterns.4

3 A Genetic Algorithm for Class Selection

Given a CP, we define a class selection (CS) as a set of classes applicable to the
majority of terms (from the training set) used in contexts described by the CP.
Generally, a CS represents a hypothesis about the classes of terms complement-
ing the corresponding CP. With that respect, each CS can be quantified by its
precision and recall calculated as P = A/(A+B) and R = A/(A+C), where A,
B and C denote the numbers of true positives, false positives and false negatives
respectively, which are calculated as follows based on the set of training terms
{t1, ..., tm} co-occurring with the corresponding CP:

A =
m∑

i=1

|CS ∩ C(ti)| B =
m∑

i=1

|CS\C(ti)| C =
m∑

i=1

|C(ti)\CS|

2 We will describe the way of processing the left contexts. The right contexts are
treated analogously.

3 The minimal and maximal CP length have been empirically set to two and ten
respectivelly.

4 We used the CP-value to discard 20% of the top-ranked CPs and 30% of the bottom-
ranked CPs.



In the above formulas C(ti) (i = 1, ...,m) denotes the set of actual classes for the
term ti. In general, the recall of a CS increases with its size as the probability of
some of its classes applying to individual terms is higher, while its precision is
decreasing as many of the classes would not apply to individual terms. The goal,
thus, is to find a CS of an optimal size and content so as to provide suitable recall
and precision. In our approach, we opted to use a genetic algorithm (GA) to learn
the CSs automatically, since GAs are particularly suited for the optimisation
problems [3].

GAs are meta-heuristics incorporating the principles of natural evolution
and the idea of ”survival of the fittest” [3]. An individual encodes a solution
as a sequence of genes. In the initial phase of a GA a number of solutions is
generated, usually at random. Selection, crossover, mutation, and replacement
are applied in this order aiming to gradually improve the quality of the solutions
and the possibility of finding a sufficiently good solution. Selection is usually
defined probabilistically: the better the solution, the higher the probability for
that solution to be selected as a parent. Selected individuals are recombined by
applying the crossover between pairs of individuals. The offspring is expected
to combine the good characteristics of their parents, possibly giving way to
better solutions. The mutation operator introduces diversity into a population by
modifying a solution, possibly introducing previously unseen good characteristics
into the population. Fitness function quantifies the quality of individuals. The
ones with the best fitness values replace less fit individuals. Once a suitable
solution has been found or the number of iterations exceeds some threshold, the
iterations of the GA are stopped.

In our approach, each individual (i.e. CS) is represented as a sequence of
genes, where each gene denotes whether the corresponding class is a member
of the CS. The goal is to optimise a CS so as to enhance its recall R(CS)
and precision P (CS). The fitness f of a CS is calculated as follows: f(CS) =
wR · R(CS) + wP · P (CS), where wR and wP are the weights modelling the
preferences towards precision and recall.5 The objective is to find a solution with
a (near)maximal fitness value. The initial population is formed by generating
random individuals. We used uniform crossover: genes at each fixed position are
exchanged with 50% probability. Individuals are mutated with 1% probability
by a randomly changing a randomly chosen gene.

4 Term Classification

Let CP = {cp1, ..., cpn} be a set of automatically extracted CPs. During the
phase of learning the CSs, each cpi (i = 1, ..., n) is associated with a class se-
lection it may be complemented with, CSi = {ci,1, ..., ci,mi}. Each CS typically
contains multiple classes. In order to link a term to a specific class, we score
each class by a hybrid term similarity measure, called the CLS measure, which
combines contextual, lexical and syntactic properties of terms [7]. This mea-
sure, however, applies to terms, while we need to compare terms to classes. We,
5 In our experiments we used equal weights for precision and recall.



therefore, set the similarity between a term t and a class ci,j (j = 1, ..., mi) to
be proportional to the average similarity between the term and the terms from
the given class. More formally, if e1, ..., ek are randomly chosen terms6 from that
class that occur in the corpus, then term-to-class similarity is calculated in the
following way:

S(t, ci,j) =
1
k

∑k
i=1 CLS(t, ei)√∑k
i=1 CLS2(t, ei)

Note that the described method implicitly incorporates the class probability
factors. The more frequently a certain class complements the given CP, the more
likely it will be present in the corresponding CS.

5 Experiments and Evaluation

We performed the classification experiments on a corpus of 2072 abstracts re-
trieved from Medline (www.ncbi.nlm.nih.gov/PubMed/). The corpus was ter-
minologically processed by using the C/NC-value method for term recognition
[2]. Terms were tagged with the classification information obtained from the
UMLS ontology. We focused on a subtree describing chemical substances (13
classes). Terms from this hierarchy were used as part of the training (1618 terms)
and testing (138 terms) sets. A total of 1250 CPs have been automatically ex-
tracted from the corpus. We conducted experiments with 631 most relevant CPs
(the ones most frequently co-occurring with terms). Based on the training set,
CPs were associated with the CSs, e.g. the pattern V:activate PREP:by TERM
was associated with the following CS: {immunologic factor, receptor, enzyme,
hormone, pharmacologic substance}.

Each testing term was associated with the CP it most frequently co-occurred
with. The CS learnt for that CP was used to classify the term in question.
For example, the term ciprofibrate, most frequently occurring with the above
CP, was correctly classified as a pharmacologic substance. Table 1 summarises
the classification results achieved by our method and compares them to three
baseline methods, which include random, majority and naive Bayes classification.
The baseline methods map a term respectively to (1) a random class, (2) a class
with the highest number of term occurrences in the corpus, and (3) the most
probable class based on the words found in its context.

Table 1: Evaluation of the classification results.7
Method Precision Recall F-measure
CP/CS 61% 38% 47%
random 11% 8% 9%
majority 35% 25% 29%
naive Bayes 42% 18% 25%

6 We preselected ten terms for each class.
7 F-measure is calculated according to the following formula: F = 2 · P · R/(P + R),

where precision P and recall R are calculated as before.



A comparison to other methods reported in the literature would require the
results obtained on the same set. Most of these methods were either unavailable
or designed for specific classes (e.g. [5]). Nonetheless, most of the results were
reported for fewer number of classes, while the probability of missing a correct
class increases with the higher number of classes available. It is then natural for
the performance measures to provide ”poorer” values when tested on broader
classification schemes. For example, our method achieved 61% precision for 13
classes, while Hatzivassiloglou et al. [5] achieved 67% for three classes.

6 Conclusion

We presented a term classification method, which makes use of the structured
contextual information acquired automatically through contextual pattern min-
ing. The presented term classification approach revolves around these patterns.
Namely, they are used to collect unclassified terms and to suggest their poten-
tial classes based on the classes automatically predicted by a genetic algorithm,
which optimises precision and recall estimated on the set of training terms.
The suggested classes are compared through their terms to the given term by
a similarity measure, which takes into account lexical, syntactic and contextual
information.

Note that terms can be compared directly to all classes in the classifica-
tion scheme in order to perform the nearest neighbour classification directly.
However, the class pruning approach has been adopted in order to enhance the
computational efficiency of the classification process itself. In this approach, the
contextual and classification information learned offline needs to be updated
periodically in order to reflect the changes in the corpus of literature and the
information available in the ontology.

The precision of our method could be improved by analysing and exploiting
orthographic and lexical term features characteristic of specific classes (e.g. suffix
-ase for the class of enzymes). On the other side, the recall could be improved
by taking into account more context patterns and by using larger corpora.
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