Alle Publikationen

2024
Yu, Z. und Ananiadou, S., How do Large Language Models Learn In-Context? Query and Key Matrices of In-Context Heads are Two Towers for Metric Learning, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Seiten 3281–3292, 2024
[DOI]
[URL]
Yu, Z. und Ananiadou, S., Interpreting Arithmetic Mechanism in Large Language Models through Comparative Neuron Analysis, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Seiten 3293–3306, 2024
[DOI]
[URL]
Yang, K, Liu, Z., Xie, Q., Huang, J., Zhang, T. und Ananiadou, S., MetaAligner: Towards Generalizable Multi-Objective Alignment of Language Models, in: Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024
[URL]
Yu, Z. und Ananiadou, S., Neuron-Level Knowledge Attribution in Large Language Models, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Seiten 3267–3280, 2024
[DOI]
[URL]
Goldsack, T., Luo, Z., Xie, Q., Scarton, C., Shardlow, M., Ananiadou, S. und Lin, C., Overview of the BioLaySumm 2023 Shared Task on Lay Summarization of Biomedical Research Articles, in: Proceedings of the 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, Seiten 468-477, 2024
[DOI]
[URL]
Zhang, T., Yang, K, Ji, S., Liu, B, Xie, Q. und Ananiadou, S., SuicidEmoji: Derived Emoji Dataset and Tasks for Suicide-Related Social Content, in: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '24), Seiten 1136 - 1141, 2024
[URL]
2023
Liu, B, Schlegel, V., Batista-Navarro, R. und Ananiadou, S., Argument mining as a multi-hop generative machine reading comprehension task, in: Findings of the Association for Computational Linguistics: EMNLP 2023, Seiten 10846–10858, 2023
[URL]
Luo, Z., Xie, Q. und Ananiadou, S., CitationSum: Citation-aware Graph Contrastive Learning for Scientific Paper Summarization, in: Proceedings of the ACM Web Conference, Seiten 1843–1852, 2023
[DOI]
[URL]