Ananiadou, S.
Vorname(n): S.
Nachname(n): Ananiadou

Publikationen von Ananiadou, S. sortiert nach erstem Autor


L

Li, M., Myrman, A. F., Mu, T. und Ananiadou, S., Modelling Instance-Level Annotator Reliability for Natural Language Labelling Tasks, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Seiten 2873-2883, 2019
[URL]
Li, M., Nguyen, N. T. H. und Ananiadou, S., Proactive Learning for Named Entity Recognition, in: Proceedings of BioNLP 2017, Seiten 117--125, Association for Computational Linguistics, 2017
[URL]
Li, M., Takamura, H. und Ananiadou, S., A Neural Model for Aggregating Coreference Annotation in Crowdsourcing, in: Proceedings of the 28th International Conference on Computational Linguistics (COLING 2020), Seiten 5760-5773, 2020
[URL]
Liakata, M., Thompson, P., de Waard, A., Nawaz, R., Pander Maat, H. und Ananiadou, S., A three-way perspective on scientific discourse annotation for knowledge extraction, in: Proceedings of the ACL Workshop on Detecting Structure in Scholarly Discourse (DSSD), Seiten 37-46, 2012
[URL]
Liu, B, Schlegel, V., Batista-Navarro, R. und Ananiadou, S., Entity Coreference and Co-occurrence Aware Argument Mining from Biomedical Literature, in: Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023, 2023
[URL]
Liu, B, Schlegel, V., Batista-Navarro, R. und Ananiadou, S., Argument mining as a multi-hop generative machine reading comprehension task, in: Findings of the Association for Computational Linguistics: EMNLP 2023, Seiten 10846–10858, 2023
[URL]
Liu, Z., Liu, B, Thompson, P., Yang, K und Ananiadou, S., ConspEmoLLM: Conspiracy Theory Detection Using an Emotion-Based Large Language Model, in: Proceedings of the 13th International Conference on Prestigious Applications of Intelligent Systems (PAIS-2024), Seiten 4649 - 4656, 2024
[DOI]
[URL]
Liu, Z., Thompson, P., Rong, J. und Ananiadou, S., ConspEmoLLM-v2: A robust and stable model to detect sentiment-transformed conspiracy theories, in: Proceedings of the 14th Conference on Prestigious Applications of Intelligent Systems (PAIS-2025), Seiten 5311 - 5318, 2025
[URL]
Liu, Z., Wang, K., Bao, Z., Zhang, X., Dong, J., Yang, K, Kabir, M., Giannouris, P., Xing, R., Park, S., Kim, J., Li, D., Xie, Q. und Ananiadou, S., FinNLP-FNP-LLMFinLegal-2025 Shared Task: Financial Misinformation Detection Challenge Task, in: Proceedings of the Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal), Seiten 271–276, 2025
[URL]
Liu, Z., Zhang, X., Yang, K, Xie, Q., Huang, J. und Ananiadou, S., FMDLlama: Financial Misinformation Detection Based on Large Language Models, in: Proceedings of the ACM on Web Conference 2025, Seiten 1153 - 1157, 2025
[DOI]
[URL]
Luo, Z., Liu, L., Ananiadou, S. und Xie, Q., Graph Contrastive Topic Model (2024), in: Expert Systems with Applications, 255:Part C(124631)
[DOI]
[URL]
Luo, Z., Xie, Q. und Ananiadou, S., CitationSum: Citation-aware Graph Contrastive Learning for Scientific Paper Summarization, in: Proceedings of the ACM Web Conference, Seiten 1843–1852, 2023
[DOI]
[URL]
Luo, Z., Xie, Q. und Ananiadou, S., Readability Controllable Biomedical Document Summarization, in: Findings of the Association for Computational Linguistics: EMNLP 2022, Seiten 4667–4680, 2022
[URL]
Luo, Z., Yuan, C., Xie, Q. und Ananiadou, S., EMPEC: A Comprehensive Benchmark for Evaluating Large Language Models Across Diverse Healthcare Professions, in: Findings of the Association for Computational Linguistics: ACL 2025, Seiten 9945–9958, 2025
[DOI]
[URL]