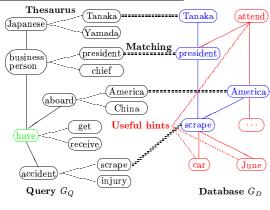
Information Retrieval Based on Linguistic Structure

Takashi MIYATA (CREST, JST) Kôiti HASIDA (CARC, AIST)

 $\begin{array}{c} {\rm Japanese\text{-}German\ Workshop\ on\ NLP:} \\ {\rm NLP\ for\ Information\ Management\ and\ Semantic\ Web} \\ {\rm 4-5/July,\ 2003\ (Sapporo)} \end{array}$

1


Background

- Large amount of machine-readable documents
 ⇒ provide research motivation and resource
- Recent improvement of parsing technology
 [Charniak 2000][Kudo&Matsumoto 2000]
 require large amount of annotated corpora

Popularization of annotation by providing useful application would promote NLP research, and vice versa.

3

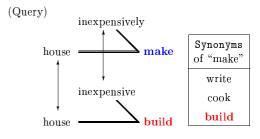
Semantic Structure in IR

Graph Embedding

- NP-hard problem [Zhang et al 1996]
- Query graph can be assumed small.
 ⇒ Enumerate candidates and their scores by dynamic programming (not always return strict solution)
- Undirected graphs with unlabeled edges are assumed for simplicity.

Target and Requirement

- Requests that specify 'content' clearly
 - × documents on robots
 - O documents reporting robots build houses
 - * Find documents, not "standard" web sites
- To treat such requests, the followings are needed:
 - Clarification of users' intention
 - Implement highly accurate document search
 - Interaction between user and computer to compensate recall


2

Annotation and Semantic Structure

Annotation for "I drew a man with a pencil" (above) and derived semantic structure (below)

4

Structure based Similarity Measure

 $(Subgraph\ in\ database\ (candidate))$

Prefer synonyms fitting in the context of the query and the database

6

Example (1/2)

Suppose to find articles that report:

"building houses with lower cost by robots"

- 1. Input keywords: build, house, cost, use, robot
- 2. and synonyms: estate for house, machine for robot, etc
- 3. Input edges: build-house, use-robot, etc
- 4. Find related/synonymous keyword construct for build, which happened to be less preferred in thesaurus.

8

Demonstration

Example (2/2)

- Thinking of related/synonymous words is quite difficult.
- Preparation of general and complete thesaurus in advance is impossible.
 - \Rightarrow semantic structure can complement thesaurus.

10

Evaluation

- 100,000 articles (Mainichi Newspaper) in 1994 are converted into semantic graphs by KN Parser [Kurohashi 1996]
- 8 subjects perform 4 tasks each.

Database Statistics					
# nodes	$13,\!652,\!694$				
# edges	10,928,259				
thesaurus size	149,270	(distinct words)			

11

Tasks

Each subject finds the 4 kinds of articles that report:

- 1. A boy who beat Prime Minister Major in a vote
- 2. Subsidiary that will be set up in future is evaluated better than its parent company.
- 3. Area in China where people obtain capitals from aboard
- 4. Phone calls rush in when the party appears in mass media

(for practice) building houses with lower cost by robots

1:

Settings

Subjects can make use of:

- **A.** Keywords and thesaurus
- **B.** Keywords, structure, and thesaurus
- **C.** Keywords, structure, and thesaurus augmented by word co-occurrences in a sentence
- **D.** Keywords, structure, and thesaurus augmented by neighborhood in semantic graph

Experimental Design

	Task 1	${\it Task}\ 2$	${\it Task}\ 3$	${\it Task}\ 4$
Sbj 1	A	В	С	D
Sbj 2	A	В	D	\mathbf{C}
Sbj 3	В	A	$^{\mathrm{C}}$	D
Sbj 4	В	A	D	\mathbf{C}
Sbj 5	C	D	A	В
Sbj 6	C	D	D B	
Sbj 7	D	$^{\mathrm{C}}$	A	В
Sbj 8	D	С	В	A

14

Performance

					i
	Task 1	${\it Task}\ 2$	$Task\ 3$	${\it Task}\ 4$	Total
Sbj 1	NG	OK	OK	\overline{NG}	2
Sbj 2	OK	OK	OK	\mathbf{OK}	4
Sbj 3	OK	NG	OK	OK	3
Sbj 4	OK	OK	OK	NG	3
Sbj 5	OK	NG	\overline{NG}	OK	2
Sbj 6	OK	OK	\overline{NG}	OK	3
Sbj 7	NG	NG	\overline{NG}	NG	0
Sbj 8	NG	OK	OK	OK	3
Total	5	5	5	5	20

Details in 20 Success

	rank	$\mathrm{time}(\mathrm{min})$	# pages	# operations
A	14.00(12.90)	15.45(14.68)	30.00(26.07)	$\dagger 29.50 (9.63)$
В	24.50(32.53)	13.88(7.92)	25.33(21.76)	16.00(7.37)
\mathbf{C}	1.50(0.76)	*37.85(47.90)	16.83(16.00)	$\dagger 11.17 (3.44)$
D	4.75(4.82)	8.72(5.18)	12.00(8.22)	12.00(12.55)

(means and standard deviations)

- (*) One of the subjects extremely took time (136.3 minutes). Without this data, the average becomes 21.65.
- (†) Difference is statistically significant(t-test, 5%).

15

16

Details in Operations

	*node (add/del)		*edge (add/del)		syn (add/del)	
A	†7.50(2.29)	3.00(3.08)	0.00(0.00)	0.00(0.00)	‡17.00(7.31)	2.00(2.45)
В	2.17(2.11)	1.33(1.70)	2.33(2.21)	1.50(1.80)	6.83(3.02)	1.17(2.19)
$^{\rm C}$	†1.67(1.80)	0.17(0.37)	2.00(1.63)	0.83(1.07)	‡5.50(1.50)	0.33(0.75)
D	2.00(2.45)	0.50(0.87)	1.50(2.06)	0.75(0.83)	6.25(6.46)	0.25(0.43)

(means and standard deviations)

17

- (*) Excluding those in initially generated graphs by parser.
- (\dagger, \ddagger) Differences are statistically significant (t-test, 5%).

Summary

- Searching in small and medium sized sets of documents based on semantic structure is already feasible within the current technology.
- Semantic structure can provide useful hints for query revision.
- Making users learn and understand 'tips' of search with semantic structure would be needed.

18