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Motivation - Metadata Bottleneck -

i # Metadata is

= useful in discovering and utilizing existing information
resources (contents)
+ essential for non-textual content

= however, costly if we are to create it
+ Inevitably so for non-textual content

# Metadata Bottleneck
a there I1s a bottleneck in metadata creation

= media processing (speech recognition, character
recognition, image recognition, etc.) and natural
language processing are key to break the bottleneck

# to begin with the project
= primal target: broadcast news program

1N




1N

Why Broadcast News Program?

# The semantic intent is mainly conveyed by the
speech uttered by the anchors

# The speech is usually fluent and clear
(acoustic/linguistic)

= adequate for applying current-level automatic speech
recognition (ASR)
= NLP can be applicable after the speech-to-text process
# News program has relatively clear structure

= Example: Opening, Leading index, Story-1, Story-2, ...,
Story-n, Weather forecast, Market information, Closing

= Chance to apply NLP for structuring the entire
program (automatic story segmentation)
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Structure of the News Program Metadata
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Prototype System Overview
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Demonstration
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Audio-based Segmentation

# segments audio stream into a set of intervals, each of

them is assigned one of the following class labels: speech,
music, noise, silence

# based on supervised learning method
# using some distinctive acoustic features

# highly accurate, particularly in extracting speech intervals
(—96% in F-measure)
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Automatic Speech Recognition - VoiceRex -
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# Input: a speech segment

# Output: time-stamped morphological information
= pronunciation, part-of-speech, information from the dictionary
» confidence measure (acoustic/linguistic)

# Acoustic model
= can utilize multiple models (male/female/gender-free)
= chooses the best one by GMM (Real Time Factor: 1.4)
# Language model
= tri-gram learned from 600k sentences
= Vvocabulary: 30k words

# Recognition accuracy (in WER)
m speaker: anchor (15.7%) ~ reporter (28.4%)
= noise: clean (19.2%) ~ very-noisy (35.4%)
m Style: read (18.1%) ~ spontaneous (30.4%) —~ free (59.7%)
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Topic Segmentation - Algorithm Overview -

# Input: a sequence of ASR transcriptions, each of them
comes from a speech segment

# Output: topic boundaries

# Procedure
m preparation: constructs "concept-base"

m pre-processing:

+ remove "stop-words" from the input

+ assign "concept-vector" to each remaining content word
m for each sliding windows

+ compute centroid concept vector for the window

+ compute similarity values with the adjacent window, via cosine
measure

= smooth the similarity values
m choose the topic boundaries by looking at the "depth scores"




Topic Segmentation - An Example -
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Topic Segmentation - Concept-Base -
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Integrated Segmentation - Aigorithm Overview -
p
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Two Step Algorithm:
«1-st Step: extract candidate time frames by calculating score values
«2-nd Step: choose a boundary time point from each candidate
time line
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Integrated Segmentation - An Example -

time line

INTG=1028_1300_MHK:intg.xml

0 100 200 300 400 500 GO0 700 &0 800 1000 1100 1200 1300 1400 1500 1600 1700 1&M
INTG| 1 | z | a | 4 | 5 | B | 7 | E |9|1n|

& ] = [i] [i] [i] [i] & [u]

REF | 1 | 2 [ s[4 s | & | 7 s
s | | | UL IR [T T TTJ0C 1 L Ll
sc [ TATT T T T T O T T T T I 7T T T T T TN T T T IO T T

Extracted=9, Expected=8, Ok=6, Precizion=66.73%, Recall=75.0%

A 30-min. TV News without CM, 2002 10/28

INTG: result from the integrated segmentation
REF: human-annotated reference (correct)
TS: Topic Segmentation result

SC: Scene Change detection result

AS: Audio-based Segmentation results



Evaluation - Topic Segmentation -
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eData: twelve TV news
programs (total: 195

minutes, almost 1,000
sentences, 26k tokens)

enot accurate as artificial
data (cf. ~80% in [Bessho
2003])

edegradation in ASR output
cannot be ignored
(13%~33%)
sconcept-based method is
more robust to the ASR
errors than the frequency-
based (Hearst) method
(13%-26%, 22%-33%)




Evaluation - Integrated Segmentation (1/2) -
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Evaluation - Integrated Segmentation (2/2) -
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enon-linguistic processing
(as+sc) is clearly insufficient
*speech-based and
audio/visual-supported
processing (as+ts+sc)
(as+ts), (sc+ts) are slightly
better than linguistic
processing (ts) alone! (but
not very significant...)

sprobably, there are plenty
of rooms to improve the
accuracy by integrating the
audio/visual results in better
ways




Conclusions
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# A prototype indexing system with search/access interface
Is developed and demonstrated
» ASR and succeeding NLP play an essential role for speech-
centered news programs
# Evaluation results from the small-sized preliminary
experiments are shown
= Nnot perfect yet, but promising
= audio/visual information may further improve the story
segmentation accuracy
# More efforts are necessary for realizing automatic
content metadata creation and the associated advanced
search/access functions

m even if, "ad hoc" SDR (Spoken Document Retrieval) in news
domain Is a solved problem, as claimed by TREC people
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Future Works

J
# More evaluations...

@ Improve segmentation accuracy

= Improve topic segmentation accuracy by using reliably recognized
tokens (use of ASR confidence measure)

= Seek better "blend" in the integrated segmentation
m last resort?: use of pre-knowledge about structure of the target

news programs

# More NLP
= Event extraction and tracking (TDT)
= Summary generation (from collapsed ASR transcriptions)

# Search/Access system design

# Other types of content: documentaries, lectures, meeting,
etc.
= Improve the robustness of the ASR for spontaneous/free speech
= beyond the topic segmentation...
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