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Abstract

Anatomical entities are central to much
of biomedical discourse and must be con-
sidered in any attempt to fully analyse
biomedical scientific text. However, while
a wealth of tools and resources have been
introduced in domain natural language pro-
cessing efforts for the recognition of men-
tions of biomolecules and organisms in
text, there has been little study of anatom-
ical entities such as tissues and organs. In
this paper, we consider the closely related
tasks of distinguishing terms that refer to
anatomical entities from ones that do not
and assigning the former into upper-level
semantic classes. We draw on the wealth
of anatomical domain resources available
in the Open Biomedical Ontologies repos-
itory, evaluating entity detection perfor-
mance using the ontologies against a manu-
ally curated corpus of 5000 phrases occur-
ring with high frequency in PubMed. We
further analyse the upper-level structure of
these ontologies to determine whether the
resources offer a stable basis for species-
independent classification and discuss re-
maining conflicts and challenges.

1 Introduction

The development of tools capable of automat-
ically analysing natural language text to pro-
vide a structured representation of statements re-
garding the connections between molecular-level
processes and organism-level effects is a long-
standing goal of biomedical natural language pro-
cessing (NLP) (Ananiadou et al., 2010). Men-
tions of anatomical entities such as blood, epithe-

lium and heart are central to establishing such
effects, yet their recognition in text has been
largely neglected in recent biomedical NLP. A
wealth of resources and systems have been in-
troduced for the recognition of molecular enti-
ties such as genes/proteins (Kim et al., 2004; Set-
tles, 2005; Hirschman et al., 2005; Krallinger
et al., 2008; Leaman and Gonzalez, 2008) and
chemicals (Corbett and Murray-Rust, 2006; Cor-
bett et al., 2007; Nobata et al., 2010; Kolluru
et al., 2011) and recent efforts have successfully
addressed the recognition of organism mentions
(Gerner et al., 2010a; Solt et al., 2010; Naderi
et al., 2011). However, although the intermedi-
ate levels of biological organization are in scope
of general-purpose term tagging tools (Aronson,
2001; Jonquet et al., 2009), anatomical entities
have been specifically considered in few studies,
with focus on a limited number of classes such as
cells (Kim et al., 2004) or on mention detection
without classification (Gerner et al., 2010b).

The definition of a task scope and semantic
classes is a prerequisite for the systematic study
of entity recognition. In this study, we take
these first steps toward establishing a species-
independent anatomical entity mention recogni-
tion task, aiming to maintain compatibility with
existing ontologies and to complement estab-
lished entity recognition tasks without overlap in
scope. We curate a reference corpus of common
anatomical entity mentions as they appear in text
and study the use of ontologies for differentiating
statements referring to anatomical entities from
ones that do not (detection) and assigning a se-
mantic class to each of the former (classification).



2 Resources

The resources presented in this section serve as
the foundation for this work.

2.1 OBO anatomy resources
Following a preliminary review of available
anatomical resources, we chose to base our study
on the OBO (Open Biomedical Ontologies) re-
sources (Smith et al., 2007). The OBO consor-
tium seeks to develop orthogonal and mutually
interoperative biomedical domain ontologies, and
the OBO foundry website1 currently lists 40 on-
tologies involving the domain “anatomy”. These
vary in scope from single species to classes of or-
ganisms or even a whole domain of life (Plant On-
tology) and range in size from fewer than 100 to
over 50,000 terms.

For this study, we initially analysed all anatomy
ontologies in the OBO foundry to identify a set
of resources that are non-redundant (including
e.g. EHDAA2 but not its variants EHDA and
EHDAA), define at least some physical anatom-
ical entities (excluding e.g. FBdv, WBls, BSPO
and ATO) of which a non-trivial part (over 5%)
are organized in an IS-A hierarchy (excluding
EMAP, MAT, and MFO) in order to allow the
identification of the upper-level classes that spe-
cific anatomical entities belong to.2 Through this
procedure, we selected 26 anatomy ontologies
(listed in Table 4), analysed and discussed further
in the following.

The proliferation of species-specific ontolo-
gies is in part due to the lack of a species-
independent ontology of anatomy comparable to
the widely accepted OBO foundry ontologies for
biological processes (GO-BP), cellular compo-
nents (GO-CC) and cell types (CL). For broad
coverage of anatomical terms, it is thus neces-
sary to make combined use of the species-specific
resources. However, combining a large num-
ber of ontologies with varying degrees of formal-
ity – many originally developed without refer-
ence to a commonly-accepted theory of anatomy
or top-level ontology – holds substantial chal-
lenges. Two of the OBO resources, CARO and
UBERON, seek to address these challenges.

1http://www.obofoundry.org/
2Details of this selection are available from the project

page at http://nactem.ac.uk.

2.2 CARO
The Common Anatomy Reference Ontology
(CARO) (Haendel et al., 2008) seeks to define
a common basis for OBO anatomy resources.
CARO defines a small upper-level ontology, less
than 50 terms, based on the high-level structure
of the extensive Foundational Model of Anatomy
(FMA) ontology of human anatomy (Rosse and
Mejino, 2003; Rosse and Mejino, 2008). CARO
seeks to be applicable to all organisms and to
capture the consensus of a broad group of inves-
tigators representing species-specific resources.
There are ongoing efforts to standardize OBO
anatomy ontologies on CARO through consoli-
dation of upper-level ontology structures and the
definition of explicit cross-references identifying
identical terms.

CARO follows FMA in adhering to single in-
heritance and disjoint division of types. Thus,
if each term in every OBO anatomy ontology
were associated with exactly one CARO term, the
upper-level structure of CARO could provide a
unique, species-independent classification of any
anatomical entity defined in the species-specific
resources.

2.3 Uberon
The Uberon ontology (Haendel et al., 2009) aims
to unify species-specific resources by combining
them into a single multi-species ontology with ex-
plicit links to the various species-specific ontolo-
gies. Created through initial automatic alignment
of anatomy resources and subsequent manual cu-
ration, Uberon currently defines 6,208 terms and
includes 24,920 cross-reference links to other re-
sources. The Uberon resources also include a
“bridge” mapping that defines cross-references
from other anatomy ontologies to Uberon.

Were Uberon to provide sufficient coverage of
anatomical entity mentions, it could potentially
eliminate the need to consider a large number
of disparate resources to address the recognition
task. However, Uberon defines its scope as meta-
zoans – excluding e.g. bacteria and protozoa – and
involves frequent multiple inheritance and non-
disjoint types, factors that limit its coverage and
complicate its use for assigning entities into non-
overlapping classes.



Term #
MATERIAL ANATOMICAL ENTITY 12

ANATOMICAL STRUCTURE 16
PORTION OF ORGANISM SUBSTANCE 14

IMMATERIAL ANATOMICAL ENTITY 12

Table 1: CARO top-level structure and number of
other OBO anatomy ontologies defining each term. In-
dentation corresponds to IS-A structure.

3 Task definition

To define the task, we must first define anatomi-
cal entity and related key concepts. We propose
to follow the definition of the candidate standard,
CARO:

ANATOMICAL ENTITYCARO

Biological entity that is either an individual
member of a biological species or constitutes
the structural organization of an individual
member of a biological species.

CARO features a top-level division between ma-
terial and immaterial anatomical entities, fur-
ther dividing the former into structures and sub-
stances. Our analysis indicates that this division
is adopted by approximately half of the 26 con-
sidered ontologies (Table 1); most of the others
lack an explicit top-level structure.

CARO ANATOMICAL STRUCTURE subsumes
most commonly recognized anatomical entities:

ANATOMICAL STRUCTURECARO

Material anatomical entity that has inherent 3D
shape and is generated by coordinated expres-
sion of the organism’s own genome.

This definition excludes e.g. pathological forma-
tions such as tumors (Smith et al., 2005) and sim-
ple chemicals such as carbon dioxide molecules
(Rosse and Mejino, 2008).

CARO follows FMA in subdividing ANATOM-
ICAL STRUCTURE primarily by granularity, along
lines broadly corresponding to commonly recog-
nized levels of biological organization (Kumar
et al., 2004). This subdivision and the number
of considered ontologies defining each term are
shown in Table 2. We briefly note that while
most of the terms are defined in roughly the
same number of ontologies defining ANATOMI-
CAL STRUCTURE, a few, in particular MULTI-
CELL-COMPONENT-STRUCTURE, have very lim-
ited adoption in OBO resources.

Term #
CELL COMPONENT 9
MULTI-CELL-COMPONENT STRUCTURE 4
ACELLULAR ANATOMICAL STRUCTURE 16
CELL 20
PORTION OF TISSUE 14
EXTRAEMBRYONIC STRUCTURE 13
MULTI-TISSUE STRUCTURE 13
COMPOUND ORGAN 12
ANATOMICAL GROUP 13
ORGANISM SUBDIVISION 15
MULTI-CELLULAR ORGANISM 14

Table 2: CARO ANATOMICAL STRUCTURE subdivi-
sion and number of other OBO anatomy ontologies
defining each term.

3.1 Scope
Based on the preceding definitions, we propose
the following scope for anatomical entity recog-
nition:

Mentions of anatomical structures, organism
substances, and immaterial anatomical enti-
ties, excluding biological macromolecules and
whole organisms.

Where biological macromolecules3 and organ-
isms4 are excluded to avoid overlap with the es-
tablished tasks of gene and gene product mention
and organism mention recognition.

3.2 Classification
The many OBO anatomy ontologies are still far
from full agreement on the upper-level ontolog-
ical structure (Tables 1 and 2). Nevertheless, in
providing a comprehensive, disjoint and species-
independent upper-level structure with rough con-
sensus support from domain resources, the CARO
division is a strong candidate for a detailed,
stable classification of anatomical entity men-
tions. We thus tentatively propose to adopt a 13-
class classification using the 11 CARO subtypes
of ANATOMICAL STRUCTURE and the disjoint
classes PORTION OF ORGANISM SUBSTANCE

and IMMATERIAL ANATOMICAL ENTITY.
3BIOLOGICAL MACROMOLECULEFMA: Anatomical

structure which has as its parts one or more ordered aggre-
gates of nucleotide, amino acid fatty acid or sugar molecules
bonded to one another.

4While we accept the view that unicellular organisms are
indistinguishable from their cells, we exclude mentions of
unicellular organism names as they are in scope of organism
mention recognition.



4 Methods

We evaluate the feasibility of the detection task,
study the coverage of the OBO anatomy ontolo-
gies, and evaluate the stability of the proposed
classification using the methods presented in the
following. As our goal is to gain insight into
the task and resources, we avoid “black-box” ma-
chine learning methods and instead apply a sim-
ple approach that permits straightforward analy-
sis.

4.1 Term matching

For determining whether a given candidate string
refers to an anatomical entity or not, we attempt to
match it against ontology terms. We assume a ba-
sic strategy where strings match only terms with
a name or EXACT type synonym that is identical,
also in case.5 We further consider the following
variants of this strategy:
Case-insensitive: match also if identical to a term
name or synonym ignoring case. For example,
“cns” matches “CNS”.
Variants: match also if identical to a lexical vari-
ant of a term name or synonym as generated by
the NLM Lexical Variant Generator.6

All synonyms: match also if identical to a syn-
onym of a type other than EXACT.
Multiple terms can be retrieved, if, for example,
a string matches the name of one term and a syn-
onym of another.

4.2 Anatomical entity classification

The clear majority of the OBO anatomy ontolo-
gies adopt an IS-A hierarchy as their primary or-
ganization. This permits a simple approach to
classification: given a term matching an input
string, trace IS-A links until a term of the desired
level of generality is found, and return the name
of that term. The assigned classes are thus simply
the names of upper-level terms. This approach is
illustrated in Figure 1.

In practice, this method often fails to resolve
to exactly one class. Not all of the resources de-
fine IS-A links for all their terms, and many can

5We normalize case in ontologies throughout, convert-
ing e.g. FMA “Plasma membrane” and SAO “Plasma Mem-
brane” into “plasma membrane”.

6http://lexsrv3.nlm.nih.gov/
LexSysGroup/Projects/lvg/

Figure 1: Idealized illustration of classification ap-
proach. Dotted line marks desired level of generality.
Example simplified from FMA.

define more than one per term (multiple inheri-
tance), leading to several candidate classes. This
issue can arise also from multiple matches for an
input string. In all cases, we retrieve the full set
of unique relevant upper-level terms7 for each on-
tology in which string matches were found.

4.3 Ontology mapping
For deciding whether candidate classes assigned
on the basis of different ontologies agree, we
determine whether their corresponding ontology
terms are equal. We consider the following ap-
proaches:
Name match: two terms are equal if their names
match under case-insensitive string matching.
CARO mapping: two terms are equal if they
map to the same CARO term, either through ex-
plicit cross-reference or through matching either
in name or synonym.
Uberon mapping: two terms are equal if they
map to the same Uberon term, either through
cross-reference or through links in Uberon bridge.
These approaches are compared through their ef-
fect on the consistency and ambiguity of the re-
sulting top-level classification.

5 Data and annotation

As there is, to the best of our knowledge, no estab-
lished species-independent corpus annotated for
anatomical entity mentions, we created a new ref-
erence corpus for evaluation. Candidate anatom-
ical entity mentions were selected on the basis
of simple overall mention frequency in PubMed

7Relevance cutoff levels were determined individually
for each ontology below terms corresponding to ANATOMI-
CAL ENTITYCARO and ANATOMICAL STRUCTURECARO.



Class #
Organism 334 6.7%
Anatomical entity 409 8.2%
Biological macromolecule 543 10.9%
Total 5000 100%

Table 3: Annotation statistics

to avoid biasing the sample toward e.g. species,
scale/granularity, or subdomains of biomedicine.

We first selected a random sample of 200,000
PubMed citations from the PubMed 2011 distri-
bution, corresponding to approximately 1% of all
citations. The titles and abstracts of these doc-
uments were then extracted and split into sen-
tences using the GENIA sentence splitter8 and the
syntactic structure of the sentences analysed with
the Charniak and Johnson (2005) parser9 using
the self-trained biomedical model of McClosky
(2009). This processing resulted in a corpus of
924,036 sentences containing a total of 8,188,974
noun phrases (NPs).

We then normalized the NPs by removing
determiners and lowercasing for sentence-initial
capitalization, removed NPs of fewer than three
letters (as excessively ambiguous) and deter-
mined the number of documents in the sample in
which each normalized phrase appears. The NPs
were then ordered by this frequency of appear-
ance, and the highest-ranking 5000 were man-
ually examined by a PhD biologist to identify
phrases which in at least one of their frequent
senses refer to an anatomical entity, also sep-
arately marking references to biological macro-
molecules (under the FMA definition) and whole
organisms. As there are no established criteria for
assigning anatomical entities to specific classes –
indeed, as this study aims to determine whether
some stable assignment can be performed using
OBO resources – no detailed classification was
performed in the annotation.

Table 3 shows the statistics of the resulting
corpus. Anatomical entities are referenced by
these common phrases with roughly comparable
frequency to biological macromolecules and or-
ganisms, providing a quantitative confirmation of
their central role in biomedical scientific text.

8http://www-tsujii.is.s.u-tokyo.ac.
jp/˜y-matsu/geniass/

9https://github.com/dmcc/bllip-parser

6 Experiments

6.1 Experimental setup

We report the results of anatomical entity men-
tion detection using the standard precision and
recall metrics, summarizing results for the two
as F-score.10 For evaluating the consistency of
the classification provided by the ontologies, we
report the average number of ontologies using
which a class could be assigned (“matches”) and
the average number of distinct classes (“classes”)
assigned for each phrase. To summarize these
results, we calculate the match/class ratio. Ide-
ally, only a single class would be assigned to each
phrase and this assignment would be supported
by multiple ontologies, giving a high match/class
ratio. Conversely, if no two resources ever agree
on class assignment, the ratio will be 1 (assum-
ing single inheritance; under multiple inheritance
values below 1 are possible).

Throughout the experiments we applied filter-
ing to ignore matches in branches of ontologies
not relating to anatomy, for example ignoring all
terms in the GO BIOLOGICAL PROCESS subon-
tology. We similarly excluded as out of scope for
the targeted definition all mentions of biological
macromolecules and whole organisms, excluding
for example the GO PROTEIN COMPLEX and the
FMA BIOLOGICAL MACROMOLECULE branch.

The manually annotated corpus was only used
in the final experiments, with all development per-
formed with reference to a small separate dataset.

7 Results

7.1 Mention detection

Table 4 summarizes the results for anatomical en-
tity mention detection. While precision is high in
almost all cases, there are enormous differences
in recall between the ontologies, with the major-
ity of the species-specific resources providing less
than 10% recall of commonly appearing anatomi-
cal terms, while a small number achieve over 50%
recall standalone. The overall trend agrees with
expected species biases inherent to PubMed, with
e.g. human and mouse resources (FMA, MA)
ranking high and fungal and slime mold ontolo-

10F1 = 2pr
p+r

, where p is precision and r recall. We use
“F-score” for F1 score throughout.



Ontology Basic Case-ins. Variants All-synon.
FMA 90/46/60.8 90/46/60.8 91/67/76.8 90/46/60.8
BTO 94/35/51.3 94/35/51.3 95/53/68.2 92/42/57.5
UBERON 95/43/59.4 95/44/59.7 94/51/66.3 92/46/61.5
MA 99/31/47.7 99/31/47.7 99/38/55.3 99/34/50.9
ZFA 88/21/33.5 82/21/33.5 90/28/42.6 83/21/33.5
TAO 76/18/28.5 74/18/28.7 82/29/42.4 76/18/28.5
XAO 99/17/29.1 99/17/29.1 99/24/38.9 99/19/32.2
EHDAA2 100/15/26.2 100/15/26.2 100/19/32.3 100/15/26.2
FBbt 89/8/14.1 86/8/14.1 85/13/22.3 86/9/16.9
CL 75/0.7/1.5 75/0.7/1.5 98/11/20.0 42/0.7/1.5
AAO 90/6/12.0 90/6/12.0 92/11/19.4 90/7/12.4
GO 75/4/8.4 76/5/8.8 81/9/15.6 58/4/8.3
HAO 73/5/10.1 73/5/10.1 65/8/14.1 74/8/13.9
SAO 67/2/4.8 67/2/4.8 83/7/13.6 67/2/4.8
TGMA 86/3/5.7 86/3/5.7 83/5/8.9 60/8/13.6
WBbt 75/4/7.1 71/4/7.0 83/6/11.5 77/6/10.6
BILA 94/4/7.6 94/4/7.6 92/6/10.7 95/4/8.5
AEO 100/2/4.8 100/2/4.8 100/4/7.6 100/3/5.3
PO 100/2/3.4 100/2/3.4 100/3/6.2 90/2/4.3
DC CL 100/2/3.9 100/2/3.9 100/3/5.8 100/2/3.9
VAO 88/2/3.4 88/2/3.4 86/3/5.7 88/2/3.4
SPD 90/2/4.3 90/2/4.3 86/3/5.7 90/2/4.3
FAO 100/0.5/1.0 100/0.5/1.0 100/1/2.0 100/0.5/1.0
CARO 100/0.5/1.0 100/0.5/1.0 100/1/2.0 100/0.5/1.0
TADS 100/0.5/1.0 100/0.5/1.0 100/1/2.0 100/0.5/1.0
DDANAT 50/0.2/0.5 50/0.2/0.5 60/0.7/1.5 33/0.2/0.5
ALL 78/58/66.9 76/58/66.2 78/80/79.2 72/60/65.4

Table 4: Anatomical entity mention detection results
(precision/recall/F-score)

gies (FAO, DDANAT) having low coverage. In-
terestingly, the highest standalone performance is
achieved through the use of the human-specific
FMA, not the multi-species Uberon. Neverthe-
less, overall highest F-score results are achieved
through combined use of all the resources (ALL).

The case-insensitive and all-synonyms match-
ing strategies show mixed results, including a
negative overall effect on the combination using
all of the ontologies. By contrast, the variant
matching strategy shows a consistent positive ef-
fect, including an over 10% point F-score im-
provement for the combination. Further combi-
nations of the matching strategies did not improve
on this result (data not shown).

As the best overall result, we find that anatom-
ical entity mentions can be distinguished from
other common phrases with nearly 80% F-score
and balanced precision and recall using an ap-
proach relying only on string matching against
OBO anatomy term names and synonyms and
their lexical variants. This indicates that the
detection task is well-defined and feasible, and
suggests that a high level of detection reliabil-
ity might be achievable using more sophisticated
methods.

Mapping Matches Classes Ratio
Name match 3.54 3.15 1.12
CARO mapping 3.56 2.96 1.20
Uberon mapping 4.71 2.39 1.97

Table 5: Anatomical entity classification results: aver-
age number of ontologies through which a class could
be assigned, number of unique classes, and their ratio.

7.2 Classification

For class comparison, we classified all of the
gold anatomy phrases using the best settings from
mention detection experiments (ALL+Variants).
Table 5 shows results for the experiments evaluat-
ing the consistency of the classification provided
by the ontologies, using the approaches described
in Section 4.3 for determining whether terms in
different ontologies agree.

As expected, there is substantial overlap be-
tween the ontologies: on average, a class can be
assigned to a phrase on the basis of more than
three different ontologies. However, this overlap
reveals a striking frequency of disparities in the
upper-level classes entities are assigned to, with
the average number of different classes nearly
matching the number of ontologies. Mapping
to CARO improves the agreement only slightly,
while bridging to Uberon has a more substantial
effect, bringing the average number of ontologies
supporting the assignment of each candidate class
close to two. However, even this effect is primar-
ily due not to elimination of ambiguity, but rather
to an increase in the number of ontologies through
which a class can be assigned.11

These results suggest that despite unification
efforts, the OBO anatomy resources disagree on
the upper-level class of many of even the most
frequently discussed anatomical entities, a find-
ing that calls into question whether the resources
can provide a stable basis for consistent organism-
independent anatomical entity classification. In
light of this result, we performed a more detailed
analysis of the classification, described in the fol-
lowing section.

11This somewhat unintuitive effect of applying the
Uberon bridge is explained by the presence of ontologies
that have incomplete IS-A structure: without mapping to
another ontology, no upper-level class can be identified for
many strings matched in these ontologies.



Term Classes
brain CARDINAL ORGAN PART (FMA), MULTI-TISSUE STRUCTURE (FBbt), COMPOUND ORGAN (ZFA,TAO),

HEAD ORGAN (MA), UNCLASSIFIED (AAO),
peripheral nervous system SET OF ORGANS (FMA), ANATOMICAL SYSTEM (ZFA,TAO), ORGAN SYSTEM SUBDIVISION (FBbt)
nerve PORTION OF TISSUE (AAO,XAO,EHDAA2,ZFA,TAO,AEO), MULTI-CELL-COMPONENT STRUCTURE (FBbt),

CARDINAL ORGAN PART (FMA)
blood vessel MULTI-TISSUE STRUCTURE (ZFA,TAO), PORTION OF TISSUE (EHDAA2,AEO)
sternum MULTI-TISSUE STRUCTURE (EHDAA2), ORGAN SYSTEM SUBDIVISION (FBbt), COMPOUND ORGAN

(FMA), AREA (HAO)
ganglion PORTION OF TISSUE (AAO,XAO,EHDAA2,ZFA,TAO,AEO), MULTI-TISSUE STRUCTURE (FBbt,FMA)
mesoderm EMBRYONIC STRUCTURE (BILA,AAO), PORTION OF TISSUE (ZFA,TAO),

DEVELOPING ANATOMICAL STRUCTURE (EHDAA2), GESTATIONAL STRUCTURE (FMA)
blastomere EMBRYONIC STRUCTURE (BILA,TAO), CELL (AAO,XAO,ZFA), GESTATIONAL STRUCTURE (FMA)

Table 6: Disagreements in upper-level classification for some common anatomical entities.

7.3 Analysis and discussion

To get a more detailed understanding of the classi-
fication disagreements, we calculated a confusion
matrix by determining for each pair of classes the
number of gold anatomical entities assigned both
classes when performing classification using all
the ontologies.

Analysis of the confusion matrix indicated
that within CARO, CELL, PORTION OF TISSUE,
ANATOMICAL GROUP and ORGANISM SUBDI-
VISION were assigned relatively frequently and
consistently, each with over 100 entity men-
tions matching in multiple ontologies assigned
the class, and 70% or more of such cases agree-
ing on the assignment. By contrast, there was fre-
quent disagreement in the “middle granularity”
range of MULTI-TISSUE STRUCTURE and COM-
POUND ORGAN, where the high-coverage ontolo-
gies FMA, MA and UBERON define the addi-
tional non-CARO term ORGAN. The other CARO
classes were assigned in only relatively few cases.

Table 6 illustrates a number of cases where
the ontologies disagree on upper-level clas-
sification, showing also non-CARO terms.
Anatomical structures relating to development
(GESTATIONAL STRUCTURE / DEVELOPING

STRUCTURE / EMBRYONIC STRUCTURE) were
a particularly frequent source of disagreement
involving non-CARO terms. Further, the dis-
agreements are not, in general, limited to cases
that could be argued to be actual species differ-
ences and in many cases involve also prominent
OBO ontologies (e.g. disagreements between
FMA and the “foundry” ontology ZFA), suggest-
ing that many reflect genuine disagreement on
foundational principles.

8 Conclusions

In this study, we have taken the first steps toward
establishing an organism-independent anatomical
entity recognition task, proposing a task scope
and a tentative set of detailed entity classes based
on the Common Anatomy Reference Ontology
(CARO), introduced a corpus of 5000 common
phrases from the biomedical scientific literature
manually annotated for anatomical entity detec-
tion, and presented initial experiments evaluating
the feasibility of the detection and classification
tasks using 26 anatomy ontologies from the OBO
(Open Biomedical Ontologies) foundry.

Experiments showed that anatomical entity
mentions can be differentiated from other com-
mon phrases with nearly 80% precision and recall
using a simple strategy based on ontology term
matching, indicating that the entity detection task
is both well-defined and feasible. However, the
OBO resources were found to frequently disagree
on the upper-level classification of anatomical en-
tities, an issue that analysis indicated to be partic-
ularly common for multi-tissue structures, com-
pound organs, and development-related struc-
tures. The resolution of the challenges in estab-
lishing a stable, detailed, organism-independent
upper-level classification of anatomical entities
remains future work.

All the resources and tools introduced in this
study, including the manually annotated corpus,
the detailed results of the analysis of classification
disagreements, and the anatomical entity detec-
tion and classification system, are freely available
from http://nactem.ac.uk.
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