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Review
Systems biology recognizes in particular the importance
of interactions between biological components and the
consequences of these interactions. Such interactions
and their downstream effects are known as events. To
computationally mine the literature for such events, text
mining methods that can detect, extract and annotate
them are required. This review summarizes the methods
that are currently available, with a specific focus on
protein–protein interactions and pathway or network
reconstruction. The approaches described will be of
considerable value in associating particular pathways
and their components with higher-order physiological
properties, including disease states.

Background
Biological systems consist of entities and the relationships
between them in terms of how they interact and the down-
stream effects of such interactions. Classically, molecular
biology focused on the entities involved, but now, in the era
of systems biology [1–3], we are beginning to appreciate the
magnitude of these interactions. Although text mining
(TM) has already been useful in systems biology appli-
cations through identification [4], normalization [5,6] and
disambiguation (see Glossary) of key entities [7,8] such as
genes, proteins and enzymes, its true capabilities are only
now beginning to be realized through automatic recog-
nition of relevant biological events and relations from
the literature. To help elucidate the roles played by bio-
molecules in important biological processes – and, in turn,
in phenotypic outcomes, such as disease and the manifes-
tation of agricultural or biotechnological traits – TM sys-
tems have to tackle the complex problem of extracting and
identifying the context and type of such relationships.
Without explicit recognition of the underlying mechanisms
of biological processes in terms of the involvement of
specific entities, TM results are either too noisy or too
restricted to be useful. TM techniques have to recognize
diverse surface forms in text that describe the same bio-
logical processes and identify which biological entities are
involved. Therefore, more advanced analytical methods are
necessary,namelymethods thatundertakedeeper semantic
analysis. To achieve this aim, text miners have developed
techniques that automatically extract biological events
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pertaining to processes such as protein–protein interactions
and protein–disease associations from the literature.

Automatic event extraction has a broad range of appli-
cations in systems biology, ranging from support for the
creation and annotation of pathways to automatic popu-
lation or enrichment of databases. Event extraction sys-
tems can be trained to recognize a wide range of activities,
including protein–protein interactions, pathway enrich-
ment and construction, gene regulatory events, and meta-
bolic or signaling reactions. The purpose of this review is to
describe the resources and techniques involved in devel-
oping tools for event extraction from the literature for
systems biology applications. To develop event extraction
systems, annotated corpora are needed. In this review, we
examine the features of a number of event annotation
corpora used by TM systems for training and development.
We also examine a number of approaches to event extrac-
tion, ranging in sophistication from pattern matching to
systems that include rich linguistic features based on full
parsing.

From entities to relations and events
Text mining in biology [9–11] has focused mainly on recog-
nizing biologically relevant entities, locating synonyms in
text (including acronyms and other term variants) [5,7,12],
and finally mapping them to unique identifiers in curated
databases (normalization) such as UniProt (www.uniprot.
org/) and Entrez Gene (www.ncbi.nlm.nih.gov/gene/) [10].
Named entity recognition (NER) [13] and normalization
[14] have been helpful for increasing the specificity of
document searches in TM systems such as KLEIO
(www.nactem.ac.uk/software/kleio/) and for significantly
reducing errors compared with simple keyword-based
retrieval. Other search systems, such as FACTA [15],
use co-occurrence statistics for normalized names in text
to enhance the discovery of hidden associations among
entities.

Mere textual co-occurrence of entities, however, does not
necessarily indicate meaningful relationships. It has been
reported that only 30% of protein pairs co-occurring in the
same sentences have an actual interaction [16]; further-
more, a considerable amount of experimental noise is
present [17] that is best addressed via a methodology that
uses multiple assays to increase confidence. In general,
ensembles of different techniques are much more effective
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Glossary

Co-occurrence: the occurrence of terms together in text can serve as an

indication of a relationship between them. For example, the co-occurrence of

two protein names within a single sentence can suggest an interaction

between the proteins. Mutual information (MI) can be further used to examine

the strength of the suggested relation. MI compares the joint probability of two

items occurring [p(x,y)] with the probability of independent occurrence

[p(x)�p(y)]. The higher the MI value, the greater is the amount of shared

information; in other words, the higher the MI value, the greater is the

confidence in hypothesizing that the occurrence of one determines or predicts

the occurrence of the other.

Disambiguation: natural language text frequently contains words that have

more than one possible interpretation. Disambiguation tasks involve selection

of the correct interpretation among ambiguous alternatives, typically drawing

on information from the context of the ambiguous expression.

Information extraction: component of text mining that takes natural language

text from a document source, extracts essential facts about one or more

predefined fact types, and represents each fact as a template with slots filled on

the basis of what is found from the text. To this end, various techniques are

deployed to recognize entities and relations, which are then used to construct

fact templates.

Metadata: ‘data about data’ (i.e. structured information regarding another

piece of information). In a search context, metadata typically refer to keywords

that identify concepts that are important for indexing of documents.

Named entity recognition (NER): task of automatically identifying mentioned

names that refer to types of entities, such as genes and proteins, in text.

Normalization: in text, a particular concept can be denoted by various surface

realizations, which are called term variants. For example, TIF2, TIF-2,

transcription intermediary factor-2 and transcriptional intermediate factor 2

all denote the same concept. Usually, one of these term variants is considered

as the preferred term. Normalization refers to the automated process by which

all term variants are grouped together into an equivalent class.

Ontologies: conceptual models used to support consistent and unambiguous

knowledge sharing and to provide a framework for knowledge integration. For

example, a biomolecular ontology might define concepts such as organic

compounds, proteins and DNA, and organize them to specify that the latter two

are subtypes of the first. In addition to organizing concepts in ‘is a’ hierarchies,

ontologies can specify other general relations such as ‘part of’ and ‘located in’,

as well as domain-specific relations, such as ‘translated into’ and ‘transcribed

into’.

Ordered pair: for an ordered pair, (a,b) differs from (b,a). An ordered entity pair

representation can be used to model directed relations, such as phosphoryla-

tion, in which the roles of the entities are different, whereas unordered pairs

are appropriate for simple symmetric relations, such as binding.

Parsing: also referred to as syntactic analysis, parsing is the process of

determining the syntactic structure of sentences. There are various approaches

to parsing. One major division is between constituency (or phrase structure)

and dependency approaches. The former can involve the building of increasing

levels of hierarchy from the basic constituents (nouns, verbs, adjectives) to

more complex constituents (noun phrases, verb phrases, sentences) in

syntactic representation; the latter establishes relations (or dependencies)

between the organizing verb and its dependent arguments. Syntactic analysis

can also be categorized into full (deep) and partial (shallow) parsing,

depending on whether the entire sentence structure or only part is resolved,

such as the major top-level phrases. Deep parsing provides relationships not

explicitly stated among words in a sentence; this is why it is commonly used

for event extraction. For example, in the sentence ‘p53 is shown to activate

transcription’, deep parsing encodes this information as follows: ‘p53’ is the

subject of the predicate ‘to activate’ and ‘transcription’ is an object. Deep

parsing often uses predicate argument structures.

Predicate argument structure: a normalized form representing syntactic

relations, as in the example ‘ENTITY1 INHIBITS ENTITY2’. Here, the formal

symbol INHIBITS is the predicate, which contains the main meaning of the

predicate argument structure, and the formal symbols ENTITY1 and ENTITY2

are its arguments, carrying information about the participants described by the

predicate.

Sensitivity: conditional probability that the case is correctly classified {=true

positives/[true positives+false negatives]}.

Specificity: conditional probability that non-cases are correctly classified {=true

negatives/[true negatives+false positives]}.

Semantic typing: assignment of a type with specified meaning to identify the

category of an item. The definitions of types, such as ‘protein’ and ‘regulation’,

would typically be defined in an appropriate ontology.

Tagging: in natural language processing, tagging is used to refer to tasks like

part-of-speech tagging in which tags or labels representing grammatical parts-

of-speech are assigned to a sequence of words or word-like units, such as

‘monocyte:NN, noun’. Other tasks add labels as tagging; for example, NER can

be performed by marking each word with an additional label (e.g. monocyte:

cell-line).
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than a single technique. In order to mine real interacting
pairs of proteins from the literature, 70% of the noise (i.e.
false positives) must be filtered out.

Text retrieval systems, such as PubMed, permit only
Boolean combinations of names. However, for semantic
and focused queries to retrieve not just articles, but also
pertinent biological facts from the literature, it is essential
to recognize named entities (e.g. protein, metabolite) as
well as biological events (e.g. activate, phosphorylate). This
leads to techniques such as relation recognition (RR) and
event recognition (ER), which are active areas of research
for the biomedical TM community [18,19] and are part of
information extraction (IE).

Relations and events

Events are characterized by verbs (e.g. transcribe,
regulate) or nominalized verbs (e.g. transcription, regula-
tion). In the sentence ‘In E. coli, glnAP2 may be activated
by NifA’, an event is specified by the verb ‘activated’, and
the event participants or arguments are defined as ‘In E.
coli’, ‘glnAP2’ and ‘NifA’. Semantic roles and concept labels
or tags are also assigned to these arguments. For example,
the verb ‘activated’ expects to have: (i) a first argument,
such as NifA: Activator, which acts as an agent or cause (a
semantic role); (ii) a second argument, glnAP2: Gene,
which acts as a theme; and (iii) the argument In E. coli:
Wild_Type_Bacteria, expressing a location. Concept labels
are based on existing ontologies.

There are several definitions of relations and events in
biotext mining, such as genotype–phenotype associations
[20,21], disease–gene associations [16,22] and regulatory
events [23]. In this review, we discuss events and relations
that are mainly expressed within the boundaries of a
single sentence and not across sentences or papers. The
extraction of genotype–phenotype associations typically
requires information scattered around several sentences
or fragments of sentences in different articles, which is
beyond the scope of this review. Entity names appear as
continuous spans in text and are mapped to identifiers
during the normalization stage. Objects, such as relations
and events, generally appear as discontinuous spans in
text, and have respective internal structures: that is, a
relation or an event generally involves more than one
entity, and the entities involved play distinct roles in
events. In some cases, events or relations are recursively
embedded; for example, a simple event, protein binding,
can play a role in a larger, composite event such as
regulation.

Once discovered, events or relations need to be
represented in a way that is suitable for computational
manipulation during subsequent processing. A relation
(Figure 1a–c) is typically represented as a pair of entities,
linked by an arc that is either directed or undirected. The
arc is given a label usually corresponding to a semantic
type (e.g. an ontological class). Both participating entities
must be specified and their roles are fixed in advance;
for example, in a regulation relation, the first entity is
always the regulator (agent or cause) and the second is the
target (theme). When the roles are the same, the relation
is symmetric, or undirected. Event representations
(Figure 1d–f) capture the association of multiple partici-



Figure 1. Relation (left) and event (right) representations for (a,d) localization, (b,e) binding and (c,f) regulation. Relations between entities can be directed (arrow) or

undirected (no arrow) and are labeled with a semantic type. Event representations can capture the association of multiple participants in different roles, are associated with

specific expressions in the text and can participate in other events.
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pants of varying numbers and with varying semantic roles
[23] that are, in principle, determined by the needs of the
domain. For example, in Figure 1d, the localization event
captures the identification of the localized entity (p65),
the source (cytoplasm) and the destination (nucleus).
There is a difference between an instance of an event
in a text and the abstract specification of an event as
contained in a TM system. An abstract specification could
mention many potential participants or arguments; the
specification for a localization event might mention a
cause. Some participants are typically obligatory (an
event would not make sense without these), whereas
others are optional. In other words, the semantic needs
of an event specification are filled according to what might
be found in the text, and not all of its needs might be met
in any one instance. However, if the obligatory needs are
not met, an event specification fails to apply. Moreover, in
Figure 1b, binding is an undirected relation, implying a
model in which X binding to Y and Y binding to X are
taken to be equivalent. By contrast, regulation (Figure 1c)
is a directed relation because the roles of the participants
are different.

It is important to note that relations and events can
function as participants in other events, thus allowing the
construction of complex conceptual networks. For example,
consider the following sentence: ‘glnAp2 expression is
affected by different carbon sources.’ In this sentence,
there are two events, one anchored to ‘expression’ (whose
object is glnAp2), and the other anchored to ‘affected’. The
expression event itself is affected. During processing,
further information can be discovered and attached to
events concerning such aspects as negation, contradiction,
speculation, probability and possibility, so that various
shades of meaning can be distinguished.

To effectively extract events, analysis of sentence struc-
ture is necessary. Event extraction can benefit in particu-
lar from the use of semantic processing or deep parsing
techniques [24,25] that analyze both the syntactic and
semantic structure of texts. The output of deep parsing
includes predicate–argument relations among words.
These relations are especially useful for event extraction
where the meaning of a sentence plays a central role [10].
Some advantages of deep parsers are that surface vari-
ations expressing the same information are captured (e.g.
Entity1 activates Entity2 and Entity2 is activated by
Entity1) and that all such examples can be compacted into
a single predicate–argument structure: {activate ARG1
Entity1 (semantic subject) ARG2 Entity2 (semantic
object)}. Predicate argument structures have been used
successfully as a representation to extract protein–protein
interactions [24].

Applications in systems biology
Searching

Once biological events have been discovered and extracted,
the question arises as to how to use this information.
Metadata are used to index digital documents for retrieval
purposes. Such metadata are typically bibliographical in
nature (e.g. author, volume, page numbers, keywords, etc.)
[26,27]. However, in principle, metadata do not need to be
confined to these traditional types [28]. Thus, it is also
possible to store and annotate extracted entities, events
and relations as document metadata. This immediately
offers the possibility of a muchmore sophisticated semantic
383
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search in comparison to conventional search engines. Thus,
a user can conduct a type of query-by-example semantic
search by partially or completely specifying elements of an
event type of interest. Given the enormous size and richness
of the literature [26], researchers are interested in obtaining
high retrieval accuracy.

The application of text mining techniques to sophisti-
cated metadata from text can be adapted to specific user
needs. Systems of interest include iHOP [29], CiteXplore
(www.ebi.ac.uk/citexplore/), GoWeb [30] and Med-
lineRanker [31]. Although these systems include more
extracted information (i.e. proteins and protein–protein
interactions) than conventional search systems, they do
not use events for searching. An example of a search
system that is, in fact, based on events is MEDIE [32].
MEDIE is an intelligent search engine designed to retrieve
biomedical events from the whole of MEDLINE, relying on
a sophisticated indexing system derived from multiple
syntactic and semantic analyses. Similar to other semantic
metadata-based systems, MEDIE uses NER [33] to auto-
matically identify semantic types, such as genes, proteins
and diseases. Entities are then normalized [6] into corre-
sponding IDs and linked to databases, such as UniProt,
Entrez Gene and Unified Medical Language System
(UMLS: www.nlm.nih.gov/research/umls/), via an ontologi-
cal database, GENA (http://gena.ontology.ims.u-tokyo.ac.
jp:8081/search/servlet/gena). Such databases provide map-
pings between entities in text and existing biological data-
bases, and facilitate normalization of the synonymy of
entities as they occur in text.

MEDIE is also based on a deep parsing technology [24]
that produces predicate argument structures (PAS). PAS
are useful because they can represent biological events
and relations in an abstract manner [32]. When searching
with MEDIE, the user fills in a simple form to specify
participants in some event of interest. For example, the
user might be interested in an activation event and would
thus specify the event verb activate, then further specify,
for instance, the subject TNFa and the object NF-kB.
MEDIE then extracts sentences containing instances of
activation events, including events expressed with other
verbs that denote the same event type, such as induce
and trigger (through reference to the Gene Ontology:
www.geneontology.org). The user does not need to specify
all fields of the query form; if the object referred to above
is not specified, the query then amounts to asking, ‘What
does TNFa activate?’ Two advantages of MEDIE over a
conventional search engine are that it returns precise facts
rather than entire documents to read and enables the user
to perform a semantic search grounded in the user’s
domain of interest rather than a keyword-based search.
In a semantic search, the event specification ties desired
concepts together; in a keyword-based search, it is very
difficult for a search engine to guess the intended relation-
ships among the query terms.

Protein–protein interaction and curation

Although narrower in focus than event recognition,
protein–protein interaction (PPI) extraction has been
addressed in several studies during the last decade [34–

36]. Compared with the extraction of events, PPI extrac-
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tion amounts to relation recognition, which only classifies
co-occurring pairs of proteins into two subsets, namely a
set of interacting pairs and a set of non-interacting pairs.
PPI extraction was targeted in the BioCreative II [37]
community challenge. The focus on PPI extraction is moti-
vated largely by the needs of database curation. A major
obstacle to curation is the high number of false positives
found in high-throughput screens [17]. Interaction data-
bases, such as DIP [38] and IntAct [39], are primarily
populated from literature analyses by human curators,
and automatic methods supporting this extraction can
considerably reduce curation costs [40]. Recent compara-
tive evaluation [24] of several state-of-the-art TMmethods
demonstrated that deep parsing technology outperformed
other techniques, such as dependency parsing and phrase
structure parsing, in terms of accuracy (precision, recall
and F-scores) for PPI extraction. Thus, deep parsing tech-
nology is also useful for relation extraction.

In addition to PPI, there is considerable interest in the
computational analysis of smallmolecules and the proteins
that they can bind. Although such chemoinformatic
approaches [41] are much less frequently considered than
PPI owing to the considerably smaller size of the com-
munity working on such approaches, it has been shown
that they have considerable power [42,43].

Linking pathways to literature

Pathways and networks are at the core of systems biology
and are becoming increasingly important for biomedical
research because they represent collectively attested
interpretations of a largenumber of facts scattered through-
out the literature. In addition, models encoded in the Sys-
tems Biology Markup Language (SBML: http://sbml.org/)
[44] can be used as input to a variety of tools such as
CellDesigner (www.celldesigner.org/) [45] and Copasi [46].
Nevertheless, models are still built manually [47] and biol-
ogists read a large number of articles to construct these
pathwaymodels; thus, theywould benefit considerably from
the use of TM tools not only to support their maintenance
[48], but also to provide direct links from the models to
literature evidence [49]. Furthermore, such tools will
become essential to keep existing models up to date by
revising them according to newly published articles.

Two of the most important applications of event recog-
nition to systems biology are linking pathways to literature
evidence and aiding pathway construction and enrichment
[50]. In the past, studies involving TM technology for net-
work construction have focused on extracting binary inter-
actions between proteins or genes [51–53]. Although the
resultant networks seem to be pathways, they do not
represent any coherent interpretations of the reported
facts [50]. Mapping between the results of automatically
constructed networks and pathways requires a deeper
analysis that emulates the interpretations of biologists,
including inferences based on biological background
knowledge. Thus, providing evidence from the literature
to pathway representations requires the extraction not
only of events, but also of the relevant context around
them.

A core component of pathway enrichment and construc-
tion is the integration of TM technology with pathway
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Figure 2. Candidate GO annotations. Recognition of events (top row) can help to derive GO annotations (bottom row) automatically. The diagrammatic representation of

event annotation is explained in Figure 1.
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visualization software (e.g. CellDesigner) and annotation
tools. The maintenance of constructed pathways requires
constant monitoring of recent publications. PathText
(www.pathtext.org) is a TM-based integrated environment
for biological pathway visualization. Unlike existing path-
way building platforms, such as WikiPathways [54] and
PathCase [55], PathText brings together the strengths of
different TM tools, including advanced searches based on
event extraction. PathText links several text mining sys-
tems (FACTA, KLEIO and MEDIE) pathway visualiza-
tions using Payao (CellDesigner) and annotation tools that
facilitate curation, thus allowing snippets from publi-
cations to be linked to nodes in the pathway or network
interactively, as well as on a community-wide basis.

GO term annotation

The Gene Ontology (GO) provides structured, controlled
vocabularies of terms describing gene and gene product
characteristics. GO is used as a reference in several
ongoing efforts to annotate genes and gene products, with
consistent and easily searchable terms identifying their
characteristics. Although automated methods have been
applied to the task, GO annotations of the highest
relevance and quality are achieved through manual anno-
tation by curators reading full-text papers. However, the
creation of manual GO annotations is an enormous effort
undertaken at considerable cost, and the�500 000manual
annotations that have been created to date cover <3% of
UniProt [56]. To reduce GO annotation costs, significant
effort has been focused on the development of systems for
automatic annotation and annotator support. Figure 2
shows how event annotation could assist in the automatic
derivation of GO annotations. Notably, GO annotation was
considered as a task in the first BioCreative challenge [57],
which found that significant obstacles still remain for
systems to achieve practically applicable levels of utility
for this task.

Unfortunately, in annotation tasks there are other con-
siderations besides cost and coverage. There is, in particu-
lar, a human factor involved. Humans typically arrive at
different judgments and decisions when asked to tackle the
same task. Thus, even when human annotators agree on
the GO codes to be assigned, they tend to indicate different
parts of the same articles as evidence of their judgments.
Such manifold difficulties encountered in GO assignment
indicate that, unlike other tasks, this task cannot be
resolved within the IE framework only. Instead, it requires
a human understanding of the text, which combines infor-
mation extracted from text with domain background
knowledge to make inferences. An important feature of
GO annotations is the use of evidence codes to indicate the
kinds of reasoning and evidence that underpin the assign-
ments. Thus, the inferred existence of an enzyme in a
particular cell might be based on sequence homologies in
the genome, on measurement of the expression of the
protein itself, or detection of the actual enzyme reactions
of interest; clearly, these forms of evidence differ in their
significance.

However, if we now wish to leverage inference and
reasoning automatically in an IE system rather than
relying on human understanding, we find that the rela-
tively simple relation representation dominant in IE is
insufficient to support reasoning. It has been argued [18]
that a structured and richly typed event representation is
required to facilitate such inferences. These considerations
led to the new design of the GENIA corpus event annota-
tion, which draws its event types from GO [58]. Thus, we
review the important area of corpus resources to support
event extraction.

Resources for event extraction
Corpus annotation

High-quality annotated corpora, or collections of texts, are
indispensable for systematic development of IE rules and
machine learning methods. Corpora are also used for
training and evaluation of text mining systems. Compared
with the annotation of named entities, event annotation
is much more complicated. Events are usually expressed
as discontinuous spans in text (Figure 1). Furthermore,
event annotations are application-oriented. For example,
researchers studying metabolic pathways are concerned
with extraction of enzymes that might be involved in
reactions defined in terms of EC numbers, whereas groups
engaged in protein functional annotation or regulatory
relations among genes are interested in a subset of event
classes in GO. With all this activity by different groups
with different interests, it is important to investigate ways
to reduce the cost of producing annotated corpora using
techniques such as accelerated annotation or active learn-
ing [59].
385

http://www.pathtext.org/


Review Trends in Biotechnology Vol.28 No.7
PPI corpora

PPI corpora remain highly relevant to event-based IE
approaches, in that they share many of the same extraction
targets. Furthermore, their representation closely corre-
sponds to that required for PPI database curation and a
large body of domain IE work has used these resources for
evaluation, so these corpora offer ways to directly assess the
relative merits of relation- and event-based IE approaches
for a practically relevant task. A number of available PPI
corpora are listed at http://mars.cs.utu.fi/PPICorpora/.

BioInfer event corpus

BioInfer was the first publicly available biomedical anno-
tated corpus to incorporate events [60]. The corpus contains
1100 sentences in which the primary annotation types
identify entities, events and sentence syntax.BioInfer anno-
tation covers both events (termed causal relationships in the
corpus ontology) and static (non-causal) relations using a
single predicate formalism. The event annotation is focused
on gene and gene product entities, which are annotated as
event participants in a cause-, target- or theme-type role. In
BioInfer, all explicitly stated events are marked, regardless
of their form of expression, (e.g. multi-word expressions not
involving verbs can also be annotated as expressing events).
An example of the type of annotation performed in the
BioInfer corpus is shown in Figure 3a.

GENIA event corpus

The GENIA annotation corpus [58] is one of the most
widely used resources in biomedical text mining. Besides
Figure 3. Example event annotations. (a) Example from BioInfer showing an event and

relations (grey text), such as equality of references identifying the same entity, membersh

(Type and role names have been edited for consistency.) (b) Example from GENIA showing

binding of the entities IkB–MAD-3 and NF-kB–p65 and the resulting localization event. Th

GREC showing a single event that is centered on the verb ‘directs’. All arguments of the e

types are assigned to arguments where appropriate, whereas the label ‘SPAN’ is assigne
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events, GENIA annotations include 40 classes of biome-
dical terms [61], occurrences of gene and gene product
names, and sentence syntax. The GENIA event corpus
comprises 1000 annotated PubMed abstracts containing
over 9000 sentences. Like BioInfer, GENIA marks up all
stated events regardless of their form of expression.
However, GENIA events allow a wider range of partici-
pants than BioInfer does, and these are marked with
more role types. This facilitates specification of site argu-
ments for events such as binding, a set of location spe-
cifications and time expressions (Figure 3b). The
annotation further marks up both negated and specu-
lated statements, identifying three different certainty
levels for evidence.

Gene Regulation Event Corpus

The Gene Regulation Event Corpus (GREC: www.nactem.
ac.uk/GREC/) [23] consists of 240 MEDLINE abstracts in
which sentence-bound events relating to gene regulation
and expression have been annotated. Events are centered
on both verbs and nominalized verbs. For each event
instance, all participants (arguments) in the same sen-
tence are identified and assigned a semantic role from a
rich set of 13 roles tailored to biomedical research articles,
together with a biological concept type linked to the
Gene Regulation Ontology (www.obofoundry.org/). GREC
is designed to facilitate the training and development of IE
systems and resources in the biomedical domain. GREC is
unique in that it annotates not only core relationships
between entities, but also a range of other important
relations. In addition to events (i.e. binding), the corpus annotation captures static

ip of an entity in a family or group, and containment of an entity as part of another.

three events: binding, localization and positive regulation. The first event represents

e causal relation is captured as the third event, positive regulation. (c) Example from

vent are assigned a semantic role from a set of 13 possible roles. Biological concept

d to any arguments that do not correspond to biological concepts.
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Table 1. Selected statistics for BioInfer, GENIA and GREC event annotated corpora

Annotation type Number of annotations

Entity Event Role Sentences Entities Events

BioInfer event 110 68 3 1100 6349 1461

GENIA event 40 40 10 9372 45224 36114

GREC 64 19 13 2400 5393 3067
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details about these relationships, including location, time,
manner and environmental conditions (Figure 3c).

Although GREC is a relatively small annotated corpus,
a recent study [62] has shown that combining smaller,
richly annotated corpora with larger corpora that are
slightly poorer in information content can help to improve
the performance of event extraction systems or semantic
role labelers. Although the benefits of combining disparate
sources in machine learning are well known, this idea is
especially attractive, given that the production of large,
richly annotated corpora can be very time-consuming.

Although different in size and number and the nature of
semantic entity types, semantic roles, and event types
(Table 1), these annotated corpora are crucial for the
training of event extraction systems. These differences
are partly task-dependent, in that certain tasks require
annotation of certain types of entities and events. Further-
more, the availability of trained annotators or the need to
train annotators, the time available for annotation within
a larger project, the text type involved (full papers,
abstracts, patents) and the complexity of a particular
annotation task can all have an impact on the construction
of event-annotated corpora. From the standpoint of general
reuse of such corpora, however, any single corpus can be
deemed inadequate for some new task; these resources are
nevertheless valuable owing to the rich linguistic and
biologically pertinent information with which they are
annotated. The annotations establish explicit links be-
tween the realms of text and biology. Given the value that
these corpora represent, every effort ismade to fully exploit
them for new tasks. Thus, in recent years, the field has
moved from the use of a single corpus to a combination of
available corpora [24].

Approaches to event extraction
There are several approaches to extraction of events from
biomedical texts. These vary in terms of the level of lin-
guistic representations incorporated (pattern matching
versus full parsing), the number of lexical and ontological
resources used, the analysis adopted (rule-based versus
machine learning) and the domain specificity (sublan-
guage-driven versus general language approaches).

Pattern matching approaches [63–65] can vary from
simple approaches, such as sentence extraction (without
attempting any syntactic generalization), to slightly more
sophisticated techniques, such as using part-of-speech tag-
ging and regular expressions, to construct IE templates.
These systems extract sentences containing matched pat-
terns and although some systems include linguistic infor-
mation, there is limited generalization and several
patterns are required, and they are thus non-transferrable
to other user cases [66].

Certain systems that have been described [67] opt for a
more syntactic approach for extraction of pathway
relations. This approach consists primarily of the extrac-
tion of relations based on ‘triples’ (subject, object and verb
constructs) obtained from surface-oriented linguistic
analysis [10]. However, such simple linguistic analysis
cannot capture the information structure of a sublanguage
[68], which demands richer relations expressing con-
ditions, manner, destination, etc. Sublanguage-driven IE
systems rely on the notion that the informational structure
[69] of the domain imposes constraints at all linguistic
levels (lexical, syntactic, semantic, discourse), which can be
exploited to produce accurate systems. A system that takes
a strong sublanguage view of the extraction of biomolecular
interactions for signal transduction and biochemical path-
ways is GENIES [70]. GENIES is a rule-based system that
uses a full parsing strategy and filters out ambiguities due
to the informational constraints imposed on verbs and
their arguments. Such systems require sublanguage gram-
mars and dictionaries, which describe the constraints of
the domain. These are typically expensive to build.

To extract events from sublanguages, such as biology,
deep linguistic knowledge and ontological information are
required. An ontology-driven system that targets events is
GenIE [71], which extracts information on biochemical
pathways, sequence structures and functions of genomes
and proteins. GenIE relies on a deep semantic representa-
tion formalism and full linguistic analysis. Importantly, it
also requires an ontology of biochemical events. Verbs are
clustered into ontological classes, which are then assigned
appropriate semantics.

Full parsing methods were applied relatively early in
biomedical IE studies [72], but the need for full textual
analysis for tasks such as PPI has not been uncontested.
However, recent evaluations support the value of full
parsing [24], and recently proposed PPI extraction
methods that perform competitively with state-of-the-art
techniques on the AIMed corpus [73] build on full parsing
techniques [74,75]. Importantly, in the recent BioNLP’09
event extraction task, full parsing was applied by the
majority of systems and by all systems ranking in the
top 50% of the primary task of event extraction, lending
strong support to its value in biomedical IE.

BioNLP shared task on event extraction

Shared tasks (‘bake-offs’), in which teams from the com-
munity compete to analyze the same datawithin a common
evaluation framework, have played a significant role in
biomedical IE. They provide standard development and
evaluation benchmarks, focusing the attention of the
research community on timely issues and acting as a driver
for the specification of new tasks and challenges. Task
definitions in shared tasks can be seen in part as progres-
sing from basic foundational tasks, such as search and
entity detection, to higher IE targets, such as event extrac-
tion. Examples of shared tasks include the TREC genomics
387



Table 2. Event types and their arguments

Event type Primary argumentsa Secondary argumentsc

Gene expression Theme (P)

Transcription Theme (P)

Protein catabolism Theme (P)

Phosphorylation Theme (P) Site

Localization Theme (P) AtLoc, ToLoc

Binding Theme (P)+b Site+

Regulation Theme (P/Ev), cause (P/Ev) Site, CSite

Positive regulation Theme (P/Ev), cause (P/Ev) Site, CSite

Negative regulation Theme (P/Ev), cause (P/Ev) Site, CSite
aFor each primary (obligatory) event argument, the role of the argument (theme, cause) is shown, with the possible argument filler type shown in parentheses (P, protein;

Ev, event).
bBinding events can take an arbitrary number (+) of proteins as primary arguments, which form protein complexes.
cSecondary arguments are optional, in that they provide extra details about the event that might only be present in certain events of a given type. Site: specific domains or

regions that correspond to the theme of an event; AtLoc: the source of an event; ToLoc: the goal or destination of an event; CSite: specific domains or regions that correspond

to the theme of an event.
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task, the International Joint Workshop on Natural
Language Processing in Biomedicine and its Applications
(JNLPBA 2004: www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
ERtask/report.html), the Learning Language in Logic
(LLL) challenge (http://genome.jouy.inra.fr/texte/) and
BioCreative [76]. Although TREC and JNLPBA focused
on named entities and information retrieval, LLL and
BioCreative revolved around IE and relations between
biomolecules. A step further from these shared tasks,
which are crucial for evaluating TM systems for biology
applications, is the recent BioNLP’09 task.

The BioNLP’09 shared task focused on event extraction
based on protein biology event types. Semantically, these
event types (Table 2) share proteins as the theme. The first
three types concern protein production and breakdown.
Phosphorylation is a representative protein-modification
event, and localization and binding are representative
fundamental molecular events. Regulation (including its
sub-types, positive and negative, as defined for this
particular shared task) represents regulatory events and
causal relations. The precise definitions of these event
types are given in terms of the corresponding GO classes.

Table 2 shows the primary (obligatory) and secondary
(optional) arguments for each event type. All events have
themes (i.e. entities that are affected by the event) as a
primary argument, which is essential for identification of
the event. Except for the types corresponding to three
regulation events and the binding event, each event type
has one primary argument, typed as protein. The regula-
tion events have two primary arguments, which are typed
as either protein or event. One of the primary arguments of
the regulation events is stated as the cause of the regula-
tion. The binding event type is more complex in that it
takes an arbitrary number (one or more) of proteins as
primary arguments, which form protein complexes. For
some event types, other arguments providing details of the
events are also defined as secondary arguments. As an
example, the localization event takes the source (AtLoc)
and goal (or destination) (ToLoc) locations as its secondary
arguments. If we consider the results of the 26 participat-
ing groups, we find that simple events corresponding to
those shown in Table 2 that take only a theme as their
primary argument (e.g. gene expression and phosphoryl-
ation) can be extracted by current state-of-the-artmethods.
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However, performance is less than 50% for binding events,
which typically involve several participants, and weaker
still for the more complex regulation events, which involve
other events as arguments.

Concluding remarks
PubMed is increasing at the rate of approximately two
papers per minute [26] and it is impossible for any indi-
vidual to comprehensively read all of the literature related
to his or her field. As we move towards more integrative
systems biology [77,78], automated reasoning will be
required [79]. A goal of TM is to enhance our ability to
extract information from the growing corpus of literature
to make the process of synthesizing this information more
efficient, manageable, comprehensive and precise.
Furthermore, as data extracted from the literature become
more structured via automated processing, they can be
more readily overlaid with other information (e.g. molecu-
lar data from experimental platforms) [27,28]. Text mining
is increasingly used to support knowledge discovery [80]
and hypothesis generation [81], and to make sense out of
the mass of biological literature [82–84].

The TM techniques presented in this review recognize
diverse surface forms in text describing the same biological
processes and identify which biological entities are
involved in them. Thus, the use of techniques that under-
take a deeper semantic analysis, such as event extraction,
is necessary for more advanced systems biology appli-
cations. The recent BioNLP shared task showed that the
effectiveness and precision of event extraction can be task-
dependent: the performance of systems depends on the
complexity of the events to be recognized and on user
needs. To improve the performance of systems for event
extraction, several TM components, such as parsers,
named entity recognizers, and taggers, will need to be
integrated and subsequently evaluated for annotated
gold-standard corpora such as GENIA.

Complex problems, such as industrial design and infra-
structure planning, all rely on sophisticated computational
techniques for production and analysis of models of real-
world systems. Biology is just beginning to move in this
direction. However, to provide the types of systems biology
models that are required, we must rely on advanced com-
putational techniques. This review shows that event

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html
http://genome.jouy.inra.fr/texte/
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extractionmethods lie at the heart of these techniques, and
the various text mining techniques and resources dis-
cussed throughout this review should be explored to the
fullest. It is through wider implementation and evaluation
of these techniques and resources in systems biology that
new insights will be gained and improvements made to the
benefit of the community as a whole.
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