Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: UNIPROT:Q9UL75 (A431)
5,640 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

Inhibition by alpha-cyano-3-ethoxy-4-hydroxy-5-phenylthiomethylcinnamamide (ST 638) of tyrosine-specific protein kinase was examined using epidermal growth factor (EGF)-treated A431 cells at the concentration of 25 to 100 microM. ST 638 had negligible effects on the growth and morphology of A431 cells and on EGF binding to its receptor, and subsequent down-regulation of the receptor. ST 638 specifically inhibited EGF-induced phosphorylation of tyrosine residues of whole cell proteins in a dose-dependent manner without affecting the phosphorylation of serine and threonine residues. ST 638 greatly inhibited the EGF-induced phosphorylation of lipocortin I at 25 microM, and yet had a negligible effect on the EGF-induced phosphorylation of EGF receptor. Neither the amount of [35S]methionine-labeled lipocortin I nor the serine/threonine phosphorylation level of fodrin beta-subunit was affected by the same concentration of ST 638. These results indicate that the phosphorylation of lipocortin I is not relevant to the transformation of A431 cells. In cell lines transformed by src or fgr oncogene encoding tyrosine kinase, ST 638 also inhibited phosphorylation of calpactin I (p36) without affecting that of the oncogene products. Two-dimensional polyacrylamide gel electrophoresis showed that ST 638 specifically inhibited the EGF-induced phosphorylation and dephosphorylation of cellular proteins in A431 cells.
...
PMID:A tyrosine-specific protein kinase inhibitor, alpha-cyano-3-ethoxy-4-hydroxy-5-phenylthiomethylcinnamamide, blocks the phosphorylation of tyrosine kinase substrate in intact cells. 214 51

Activation of the epidermal growth factor receptor (EGF-R) tyrosine kinase was investigated in membrane preparations as well as intact A431 cells, using anti-EGF-R antibodies directed against extra- and intracellular receptor domains. In vitro assay conditions were mimicked on whole cells by a mild detergent treatment. We show that, irrespective of the recognition site on the EGF-R, antibodies induce EGF-R autophosphorylation and tyrosine kinase activity towards other endogenous and exogenous substrates, but only when detergent is present. We propose that the primary effect of detergent is to create conditions in the lipid environment of the EGF-R that allow antibodies to induce receptor-receptor interactions necessary for tyrosine kinase activation.
...
PMID:Antibody-induced activation of the epidermal growth factor receptor tyrosine kinase requires the presence of detergent. 216 40

Erbstatin, a tyrosine kinase inhibitor, inhibited epidermal growth factor (EGF)-induced inositol phosphate production in cultured A431 cells. However, it did not inhibit ATP-induced inositol phosphate production. Cytosolic but not membrane-associated phospholipase C was activated by EGF, and erbstatin inhibited enhancement of the phospholipase C activity in EGF-treated cells. Thus, tyrosine kinase of A431 cells is suggested to be functionally involved in phospholipase C activation.
...
PMID:Inhibition of EGF-induced phospholipase C activation in A431 cells by erbstatin, a tyrosine kinase inhibitor. 225 16

As a first step toward developing a structural map of key sites on the epidermal growth factor (EGF) receptor, we have used resonance energy transfer to measure the distance of closest approach between the receptor-bound growth factor molecule and lipid molecules at the surface of the plasma membrane. EGF, specifically labeled at its amino terminus with fluorescein 5-isothiocyanate, was used as an energy donor in these experiments, while either octadecylrhodamine B or octadecylrhodamine 101, inserted into plasma membranes isolated from human epidermoid carcinoma (A431) cells, served as the energy acceptors. The energy transfer measurements indicate that the amino terminus of the bound growth factor is about 67 A away from the plasma membrane. On the basis of the dimensions of the EGF molecule, this suggests that EGF binds to a site on its receptor that is a considerable distance (52-82 A) from the surface of these cells. Identical results were obtained under conditions where the receptor functions as an active tyrosine kinase, suggesting that the relative juxtaposition of the EGF binding domain to the membrane surface does not change with receptor autophosphorylation or with the activation of the receptor tyrosine kinase activity.
...
PMID:Location of the epidermal growth factor binding site on the EGF receptor. A resonance energy transfer study. 227 54

We prepared methyl 2,5-dihydroxycinnamate as a stable analogue of erbstatin, a tyrosine kinase inhibitor. This analogue was about 4 times more stable than erbstatin in calf serum. It inhibited epidermal growth factor receptor-associated tyrosine kinase in vitro with an IC50 of 0.15 micrograms/ml. It also inhibited in situ autophosphorylation of epidermal growth factor receptor in A431 cells. Methyl 2,5-dihydroxycinnamate was shown to delay the S-phase induction by epidermal growth factor in quiescent normal rat kidney cells, without affecting the total amount of DNA synthesis. The effect of erbstatin on S-phase induction was smaller, possibly because of its shorter life time.
...
PMID:Inhibition of epidermal growth factor-induced DNA synthesis by tyrosine kinase inhibitors. 229 99

TGF alpha is one member of a family of soluble growth factors that are derived from integral-membrane precursors. The mature form of TGF alpha is released from its transmembrane precursor (proTGF alpha) by a protease that, in many tumor cells, is inefficient or limiting. We have previously established that, in the absence of processing, membrane-anchored proTGF alpha is biologically active and can interact with the EGF receptor on adjacent cells, thereby inducing the receptor's intrinsic tyrosine kinase activity. We further showed that this interaction leads to immediate downstream signal transduction as evidenced by Ca2+ mobilization. To extend these observations, and to investigate its transforming potential, we infected normal rat kidney (NRK) cells with retroviral expression vectors that encode mutated forms of proTGF alpha containing amino acid substitutions at the proteolytic cleavage sites. NRK cells harboring these mutant constructs do not secrete mature growth factor, but do express biologically active proTGF alpha on the cell surface as shown by their ability to induce the autophosphorylation of EGF receptor on neighboring A431 cells in co-culture. Expression of the mutant proTGF alpha molecules promoted the anchorage-independent growth of NRK cells in soft agar, and caused them to be tumorigenic when injected into nude mice. These results demonstrate that an interaction between EGF receptor and the integral membrane precursor to TGF alpha can provide a mitogenic stimulus that leads to transformation. They further suggest that the accumulation of proTGF alpha on the surface of some transformed cells has physiological relevance.
...
PMID:Expression of the TGF alpha integral membrane precursor induces transformation of NRK cells. 239 25

The epidermal growth factor receptor (EGF-R) on human epidermoid carcinoma cells, A431, was found to be predominantly associated with the detergent-insoluble cytoskeleton, where it retained both a functional ligand-binding domain and an intrinsic tyrosine kinase activity. The EGF-R was constitutively associated with the A431 cytoskeleton; this association was not a consequence of adventitious binding. The EGF-R was associated with cytoskeletal elements both at the cell surface, within intracellular vesicles mediating the internalization of the hormone-receptor complex, and within lysosomes. The EGF-R became more stably associated with cytoskeletal elements after its internalization. The cytoskeletal association of the EGF-R was partially disrupted on suspension of adherent cells, indicating that alteration of cellular morphology influences the structural association of the EGF-R, and that the EGF-R is not intrinsically insoluble. Cytoskeletons prepared from EGF-treated A431 cells, when incubated with gamma-32P-ATP, demonstrated enhanced autophosphorylation of the EGF-R in situ as well as the phosphorylation of several high molecular weight proteins. In this system, phosphorylation occurs between immobilized kinase and substrate. The EGF-R and several high molecular weight cytoskeletal proteins were phosphorylated on tyrosine residues; two of the latter proteins were phosphorylated transiently as a consequence of EGF action, suggesting that EGF caused the active redistribution of the protein substrates relative to protein kinases. The ability of EGF to stimulate protein phosphorylation in situ required treatment of intact cells at physiological temperatures; addition of EGF directly to cytoskeletons had no effect. These data suggest that the structural association of the EGF-R may play a role in cellular processing of the hormone, as well as in regulation of the EGF-R kinase activity and in specifying its cellular substrates.
...
PMID:Association of the epidermal growth factor receptor kinase with the detergent-insoluble cytoskeleton of A431 cells. 241 42

Antisera were prepared against three synthetic peptides with amino acid sequences identical to those surrounding the three major autophosphorylation sites of the epidermal growth factor (EGF) receptor. The affinity-purified antibodies reacted strongly in an enzyme-linked immunosorbent assay against the immunizing peptide but showed little cross-reaction with the other two phosphorylation site peptides. EGF receptors labelled by autophosphorylation could be specifically precipitated by each of the phosphorylation site antibodies. The antibodies recognised EGF receptors labelled at each of the autophosphorylation sites, indicating that they could bind to the immunizing sequences irrespective of their states of phosphorylation. The antibodies were able to inhibit EGF receptor autophosphorylation without affecting EGF-stimulated tyrosine kinase activity towards exogenous peptide substrates, suggesting that the kinase and autophosphorylation sites were in distinct domains. Immunofluorescent staining of A431 cells showed that the autophosphorylation site sequences resided inside the cell. The autophosphorylation sites were shown to be within a domain of 20 000 mol. wt. which could be cleaved from the receptor through limited proteolysis by the calcium-dependent protease, calpain. The position of cleavage of the EGF receptor by the protease was mapped to lie between residues 996 and 1059. These results are discussed in the context of a model for the structure and function of the human EGF receptor.
...
PMID:Antibodies to the autophosphorylation sites of the epidermal growth factor receptor protein-tyrosine kinase as probes of structure and function. 241 53

An antibody against the human epidermal growth factor receptor (EGF), capable of activating its tyrosine kinase has been produced. Antibody 2913 recognizes only the cytoplasmic portion of the EGF receptor in A431 carcinoma cells, in normal human fibroblasts, and in a variety of other human tumor cell lines (Xu, Y.-A., Richert, N., Ito, S., Merlino, G. T., and Pastan, I. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 7308-7313). Indirect immunofluorescence and electron microscopy show that the antibody binds to intact cells only after membrane permeabilization. Moreover the antibody immunoprecipitates the v-erb-B gene product in avian myeloblastosis virus-infected cells but does not recognize the secreted form (105 kDa) of the A431 cell EGF receptor which lacks the cytoplasmic domain. Antibody 2913 activates the EGF receptor kinase in solubilized A431 membranes causing autophosphorylation on tyrosine residues only. Tryptic peptide maps suggest that antibody 2913 and EGF stimulate phosphorylation of the same amino acid residues. By electron microscopy, the cytoplasmic portion of the receptor was followed throughout its endocytotic pathway. The results show that the kinase domain is rapidly degraded in lysosomes with no accumulation in the cytoplasm or in the nucleus.
...
PMID:Functional studies on the EGF receptor with an antibody that recognizes the intracellular portion of the receptor. 241 17

Site-specific antibodies to the src-homologous domain (residues 373-383) of the erbB gene product neutralized the tyrosine kinase activity of the epidermal growth factor receptor, suggesting that the region against which the antibodies were directed may be functionally important for the kinase activity. In the immunofluorescence experiment, the site-specific antibodies detected the epidermal growth factor receptor and the erbB gene product only when the cells were permeabilized prior to staining, while monoclonal anti-epidermal growth factor receptor antibody, which recognizes the epidermal growth factor binding domain, gave a positive surface stain with viable nonpermeabilized A431 cells. This result supports the view that the epidermal growth factor binding domain and the src-homologous domain are located at the cell surface and inner face of the plasma membrane, respectively.
...
PMID:Characterization of the epidermal growth factor receptor and the erbB oncogene product by site-specific antibodies. 242 Feb 76


<< Previous 1 2 3 4 5 6 7 8 9 10 Next >>