Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: UNIPROT:P35372 (opioid receptor)
11,442 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

Salvinorin A [(2S,4aR,6aR,7R,9S,10aS,10bR)-9-(acetyloxy)-2-(3-furanyl)-dodecahydro-6a,10b-dimethyl-4,10-dioxo-2h-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester] is a hallucinogenic kappa-opioid receptor agonist that lacks the usual basic nitrogen atom present in other known opioid ligands. Our first published studies indicated that Salvinorin A weakly inhibited mu-receptor binding, and subsequent experiments revealed that Salvinorin A partially inhibited mu-receptor binding. Therefore, we hypothesized that Salvinorin A allosterically modulates mu-receptor binding. To test this hypothesis, we used Chinese hamster ovary cells expressing the cloned human opioid receptor. Salvinorin A partially inhibited [(3)H]Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (0.5, 2.0, and 8.0 nM) binding with E(MAX) values of 78.6, 72.1, and 45.7%, respectively, and EC(50) values of 955, 1124, and 4527 nM, respectively. Salvinorin A also partially inhibited [(3)H]diprenorphine (0.02, 0.1, and 0.5 nM) binding with E(MAX) values of 86.2, 64, and 33.6%, respectively, and EC(50) values of 1231, 866, and 3078 nM, respectively. Saturation binding studies with [(3)H]DAMGO showed that Salvinorin A (10 and 30 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Saturation binding studies with [(3)H]diprenorphine showed that Salvinorin A (10 and 40 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Similar findings were observed in rat brain with [(3)H]DAMGO. Kinetic experiments demonstrated that Salvinorin A altered the dissociation kinetics of both [(3)H]DAMGO and [(3)H]diprenorphine binding to mu receptors. Furthermore, Salvinorin A acted as an uncompetitive inhibitor of DAMGO-stimulated guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding. Viewed collectively, these data support the hypothesis that Salvinorin A allosterically modulates the mu-opioid receptor.
...
PMID:Salvinorin A: allosteric interactions at the mu-opioid receptor. 1706 Apr 92

Enantiomeric N-phenethyl-m-hydroxyphenylmorphans with various substituents in the ortho, meta or para positions of the aromatic ring in the phenethylamine side-chain (chloro, hydroxy, methoxy, nitro, methyl), as well as a pyridylethyl and a indolylethyl moiety on the nitrogen atom, were synthesized and their binding affinity to the mu-, delta-, and kappa-opioid receptors was examined. The higher affinity ligands were further examined in the [(35)S]GTPgammaS assay to study their function and efficacy. 3-((1R,5S)-(-)-2-(4-Nitrophenethyl)-2-aza-bicyclo[3.3.1]nonan-5-yl)phenol ((-)-) was found to be a mu-agonist and delta-antagonist in that functional assay and was about 50 fold more potent than morphine in vivo. 3-((1R,5S)-(-)-2-(4-Chlorophenethyl)-2-aza-bicyclo[3.3.1]nonan-5-yl)phenol ((-)-) and several other ligands displayed inverse agonist activity at the delta-opioid receptor. The absolute configuration of all of the reported compounds was established by chemical conversion of (-)- to 1R,5S-(-)-.HBr.
...
PMID:Opioid ligands with mixed properties from substituted enantiomeric N-phenethyl-5-phenylmorphans. Synthesis of a micro-agonist delta-antagonist and delta-inverse agonists. 1740 16

Both of the enantiomers of 5-(3-hydroxyphenyl)-N-phenylethylmorphan with C9alpha-methyl, C9-methylene, C9-keto, and C9alpha- and C9beta-hydroxy substituents were synthesized and pharmacologically evaluated. Three of the 10 compounds, (1R,5R,9S)-(-)-9-hydroxy-5-(3-hydroxyphenyl-2-phenylethyl-2-azabicyclo[3.3.1]nonane ((1R,5R,9S)-(-)-10), (1R,5S)-(+)-5-(3-hydroxyphenyl)-9-methylene-2-phenethyl-2-azabicyclo[3.3.1]nonane ((1R,5S)-(+)-14), and (1R,5S,9R)-(-)-5-(3-hydroxyphenyl)-9-methyl-2-phenethyl-2-azabicyclo[3.3.1]nonane ((1R,5S,9R)-(+)-15) had subnanomolar affinity at mu-opioid receptors (Ki = 0.19, 0.19, and 0.63 nM, respectively). The (1R,5S)-(+)-14 was found to be a mu-opioid agonist and a mu-, delta-, and kappa-antagonist in [35S]GTP-gamma-S assays and was approximately 50 times more potent than morphine in a number of acute and subchronic pain assays, including thermal and visceral models of nociception. The (1R,5R,9S)-(-)-10 compound with a C9-hydroxy substituent axially oriented to the piperidine ring (C9beta-hydroxy) was a mu-agonist about 500 times more potent than morphine. In the single-dose suppression assay, it was greater than 1000 times more potent than morphine. It is the most potent known phenylmorphan antinociceptive. The molecular structures of these compounds were energy minimized with density functional theory at the B3LYP/6-31G* level and then overlaid onto (1R,5R,9S)-(-)-10 using the heavy atoms in the morphan moiety as a common docking point. Based on modeling, the spatial arrangement of the protonated nitrogen atom and the 9beta-OH substituent in (1R,5R,9S)-(-)-10 may facilitate the alignment of a putative water chain enabling proton transfer to a nearby proton acceptor group in the mu-opioid receptor.
...
PMID:Probes for narcotic receptor mediated phenomena. 34. Synthesis and structure-activity relationships of a potent mu-agonist delta-antagonist and an exceedingly potent antinociceptive in the enantiomeric C9-substituted 5-(3-hydroxyphenyl)-N-phenylethylmorphan series. 1762 13

Lupine alkaloids have been studied from the viewpoints of biosynthesis, biotechnology, chemotaxonomy, and biological activity, on the basis of the chemical investigation of the leguminous plants of the 28 species belonging to the 9 genera, which mainly grow in Japan. The results obtained have been comprehensively reviewed by authors. This review describes the stereochemistry of lupine alkaloids and focuses on the conformational flexibility of nitrogen-fused systems such as quinolizidine and indolizidine, syntheses of new unusual types of alkaloids from known lupine alkaloids, and pharmacological activity of lupine alkaloids, especially kappa-opioid receptor-mediated antinociceptive effects of matrine-type lupine alkaloids.
...
PMID:[Stereochemistry, syntheses and biological activity of lupine alkaloids--from studies on the leguminous plants growing mainly in Japan]. 1791 18

Ischaemic preconditioning (IPC) protects the heart and kidneys against ischaemia-reperfusion (I/R) injury. It has been shown that opioid receptor activation can mimic cardiac IPC. In a kidney model of I/R, a single dose of morphine failed to mimic IPC. The aim of the present study was to determine the role of chronic morphine (dependence) in protection against renal I/R injury. Male Wistar rats were treated with increasing doses of morphine (20-30 mg/kg per day, s.c., for 5 days) to develop morphine dependence (MD). Three weeks before the I/R procedure, the right kidney was removed. Ischaemia-reperfusion injury was induced by clamping the left renal artery for 45 min, followed by 24 h reperfusion. Some MD rats were pretreated with naloxone (5 mg/kg, s.c.). Twenty-four hours later, creatinine and sodium concentrations were measured in serum and urine, then creatinine clearance (CCr) and the fractional excretion of sodium (FE(Na)) were calculated. Blood urea nitrogen (BUN) was measured only in serum samples. Kidneys were also assessed histologically for evidence of tissue injury. In the present study, MD decreased tissue injury (histological score), serum creatinine and BUN levels, increased CCr and decreased FE(Na) after I/R. Pretreatment with naloxone attenuated the protective effects of MD. Morphine dependence did not have any significant effect on urine volume. In conclusion, it seems that morphine dependence protects the kidney against I/R injury via opioid receptor-dependent pathways. Further studies are required to clearly determine the mechanisms involved.
...
PMID:Morphine dependence protects rat kidney against ischaemia-reperfusion injury. 1856 96

The N-phenethyl analogues of (1R*,4aR*,9aS*)-2-phenethyl-1,3,4,9a-tetrahydro-2H-1,4a-propanobenzofuro[2,3-c]pyridin-6-ol and 8-ol and (1R*,4aR*,9aR*)-2-phenethyl-1,3,4,9a-tetrahydro-2H-1,4a-propanobenzofuro[2.3-c]pyridin-6-ol and 8-ol, the ortho- (43) and para-hydroxy e- (20), and f-oxide-bridged 5-phenylmorphans (53 and 26) were prepared in racemic and enantiomerically pure forms from a common precursor, the quaternary salt 12. Optical resolutions were accomplished by salt formation with suitable enantiomerically pure chiral acids or by preparative HPLC on a chiral support. The N-phenethyl (-)- para-e enantiomer (1S,4aS,9aR-(-)-20) was found to be a mu-opioid agonist with morphine-like antinociceptive activity in a mouse assay. In contrast, the N-phenethyl (-)-ortho-f enantiomer (1R,4aR,9aR-(-)-53) had good affinity for the mu-opioid receptor (K(i) = 7 nM) and was found to be a mu-antagonist both in the [(35)S]GTP-gamma-S assay and in vivo. The molecular structures of these rigid enantiomers were energy minimized with density functional theory at the level B3LYP/6-31G* level, and then overlaid on a known potent mu-agonist. This superposition study suggests that the agonist activity of the oxide-bridged 5-phenylmorphans can be attributed to formation of a seven membered ring that is hypothesized to facilitate a proton transfer from the protonated nitrogen to a proton acceptor in the mu-opioid receptor.
...
PMID:Synthesis and pharmacological effects of the enantiomers of the N-phenethyl analogues of the ortho and para e- and f-oxide-bridged phenylmorphans. 1868 79

Endomorphins are newly discovered mu-opioid receptor selective immunocompetent opioid peptides. Endomorphin 1 is predominantly distributed in brain, while endomorphin 2 is widely allocated in the spinal cord. Lately, endomorphins have been investigated as modulators of reactive oxygen and nitrogen species. Nitric oxide is short lived radical involved in various biological processes such as regulation of blood vessel contraction, inflammation, neurotransmission and apoptosis. The aim of this work was to investigate the in vivo effects of endomorphins on nitric oxide release and NOS 2 isoenzyme upregulation in mice peritoneal macrophages additionally challenged ex vivo with lipopolysaccharide. The results showed that endomorphin 1 or endomorphin 2 in vitro did not change NO release from peritoneal mouse macrophages during a 48 h incubation period. On the other hand in vivo endomorphins had suppressive effect on NO release as well as on NOS 2 and IL-1 protein concentration. The most of suppressive effect in vivo of both endomorphins was blocked with 30 min pretreatment with mu-receptor selective antagonist beta-FNA, which proved involvement of opioid receptor pathway in suppressive effects of endomorphins.
...
PMID:Endomorphin-suppressed nitric oxide release from mice peritoneal macrophages. 2000 70

Nitrous oxide (N(2)O)-induced analgesia is thought to be mediated by endogenous opioids. We previously showed that the mu-opioid receptor is not required for the analgesic action of N(2)O in mice using a gene knockout approach. In this study, we examined the effect of kappa- (KOP)- or delta-opioid receptor (DOP)-selective antagonists on N(2)O-induced analgesia. The analgesic effect of N(2)O was evaluated using a writhing test. Male C57BL/6 mice aged 7-8 weeks were assigned to control, N(2)O, KOP agonist, and DOP agonist groups. According to the group assignment, mice were pretreated with a KOP antagonist, nor-binaltorphimine (nor-BNI), a DOP antagonist, naltrindole hydrochloride (NTI), a KOP agonist U50488, and a DOP agonist SNC80. Mice in the control, KOP agonist, and DOP agonist groups were exposed to 25% oxygen/75% nitrogen for 30 min, and mice in the N(2)O group were exposed to 25% oxygen/75% N(2)O for 30 min. Nor-BNI [10 mg kg(-1), subcutaneously (s.c.)] significantly suppressed the analgesic effect of N(2)O and U50488. In contrast, NTI (10 mg kg(-1) s.c.) did not significantly affect the analgesic action of N(2)O, but almost completely inhibited the analgesic effect of SNC80. These results suggest that KOP plays an important role in the analgesic effect of N(2)O in mice.
...
PMID:Involvement of the kappa-opioid receptor in nitrous oxide-induced analgesia in mice. 2015 32

There is evidence to indicate that the Asp residue in the third transmembrane helix (TMH) of opioid receptors forms a salt bridge with the positively charged nitrogen of endogenous and exogenous opioid ligands. To further examine the role of this electrostatic interaction in receptor binding and activation, we synthesized "carba"-analogues of a published fentanyl analogue containing a 3-(guanidinomethyl)-benzyl group in place of the phenyl moiety attached to the ethylamido group (C. Dardonville et al., Bioorg. Med. Chem. 2006, 14, 6570-6580 (1)), in which the piperidine ring nitrogen was replaced with a carbon. As expected, the resulting cis and trans isomers (8a and 8b) showed reduced mu and kappa opioid receptor binding affinities as compared to 1 but, surprisingly, retained opioid full agonist activity with about half the potency of leucine-enkephalin in the guinea pig ileum assay. In conjunction with performed receptor docking studies, these results indicate that the electrostatic interaction of the protonated nitrogen in the piperidine ring of fentanyl analogues with the Asp residue in the third TMH is not a conditio sine qua non for opioid receptor activation.
...
PMID:"Carba"-analogues of fentanyl are opioid receptor agonists. 2021 25

Novel naltrexone derivatives 7 and 8 with contracted and expanded D-rings were synthesized to investigate the importance of orientation of lone electron pair on the nitrogen for binding abilities to the opioid receptor. Compound 7 showed almost no binding affinity, whereas compound 8 was comparable to naltrexone (6) in binding affinity. Conformational analyses and NOE experiments in D(2)O of compounds 6-8 suggested that the lone electron pairs of compounds 6 and 8 with respective six- and seven-membered D-rings would project in the pseudo-axial orientation, whereas compound 7 with five-membered D-ring would have the lone electron pair directing in pseudo-equatorial position. These results strongly supported the proposal that the axial orientation of the lone electron pair on nitrogen would provide sufficient binding abilities to the opioid receptor and that the 15-16 ethylene moiety in the morphine structure would play a role in fixation of the lone electron pair in the axial direction rather than interaction with the putative cavity in the Beckett-Casy model.
...
PMID:Investigation of Beckett-Casy model 3: synthesis of novel naltrexone derivatives with contracted and expanded D-rings and their pharmacology. 2047 7


<< Previous 1 2 3 4 5 6 7 8 9 Next >>