Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: UNIPROT:P24557 (thromboxane A2 synthase)
124 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

Sympathetic nerves release noradrenaline, whereas adrenal medullary chromaffin cells secrete noradrenaline and adrenaline. Therefore, plasma noradrenaline reflects the secretion from adrenal medulla in addition to the release from sympathetic nerves, however the exact mechanisms of adrenal noradrenaline secretion remain to be elucidated. The present study was designated to characterize the source of plasma noradrenaline induced by intracerebroventricularly (i.c.v.) administered bombesin and prostaglandin E2 in urethane-anesthetized rats. Bombesin (1.0 nmol/animal, i.c.v.) elevated plasma noradrenaline and adrenaline, while prostaglandin E2 (0.3 nmol/animal, i.c.v.) elevated only plasma noradrenaline. The bombesin-induced elevations of both catecholamines were attenuated by pretreatments with furegrelate (an inhibitor of thromboxane A2 synthase) [250 and 500 microg (0.9 and 1.8 micromol)/animal, i.c.v.)] and [(+)-S-145] [(+)-(1R,2R,3S,4S)-(5Z)-7-(3-[4-3H]-phenylsulphonyl-aminobicyclo[2.2.1]hept-2-yl)hept-5-enoic acid sodium salt] (an antagonist of prostanoid TP receptors) [100 and 250 microg (250 and 625 nmol)/animal)], and abolished by acute bilateral adrenalectomy. On the other hand, the prostaglandin E2-induced elevation of plasma noradrenaline was not influenced by acute bilateral adrenalectomy. These results suggest that adrenal noradrenaline secretion and sympathetic noradrenaline release are mediated by differential central mechanisms; brain prostanoid TP receptors activated by bombesin are involved in the adrenal noradrenaline secretion, while brain prostanoid EP (probably EP3) receptors activated by prostaglandin E2 are involved in the sympathetic noradrenaline release in rats. Brain prostanoid TP receptors activated by bombesin are also involved in the adrenal adrenaline secretion.
...
PMID:Brain prostanoid TP receptor-mediated adrenal noradrenaline secretion and EP3 receptor-mediated sympathetic noradrenaline release in rats. 1581 87

In previous studies we have reported that NQ301, a synthetic 1,4-naphthoquinone derivative, displays a potent antithrombotic activity, and that this might be due to antiplatelet effect, which was mediated by the inhibition of cytosolic Ca(2+) mobilization in activated platelets. In the present study, the effect of NQ301 on arachidonic acid cascade in activated platelets has been examined. NQ301 concentration-dependently inhibited washed rabbit platelet aggregation induced by collagen (10 microg/ml), arachidonic acid (100 microM) and U46619 (1 microM), a thromboxane A2 receptor agonist, with IC50 values of 0.60+/-0.02, 0.78+/-0.04 and 0.58+/-0.04 microM, respectively. NQ301 also produced a shift to the right of the concentration-effect curve of U46619, indicating a competitive type of antagonism on thromboxane A2/prostaglandin H2 receptor. NQ301 slightly inhibited collagen-induced arachidonic acid liberation. In addition, NQ301 potently suppressed thromboxane B2 formation by platelets that were exposed to arachidonic acid in a concentration-dependent manner, but had no effect on the production of prostaglandin D2, indicating an inhibitory effect on thromboxane A2 synthase. This was supported by thromboxane A2 synthase activity assay that NQ301 concentration-dependently inhibited thromboxane B2 formation converted from prostaglandin H2. Moreover, NQ301 concentration-dependently inhibited 12-hydroxy-5,8,10,14-eicosatetraenoic acid formation by platelets that were exposed to arachidonic acid. Taken together, these results suggest that NQ301 has a potential to inhibit thromboxane A2 synthase activity with thromboxane A2/prostaglandin H2 receptor blockade, and modulate arachidonic acid liberation as well as 12-hydroxy-5,8,10,14-eicosatetraenoic acid formation in platelets. This may also be a convincing mechanism for the antithrombotic action of NQ301.
...
PMID:An antithrombotic agent, NQ301, inhibits thromboxane A2 receptor and synthase activity in rabbit platelets. 1612 10

In addition to endothelium-derived relaxing factor and hyperpolarizing factor, vascular endothelium also modulates smooth muscle tone by releasing endothelium-derived contracting factor(s) (EDCF), but the identity of EDCF remains obscure. We studied here the involvement of hydrogen peroxide (H2O2) in endothelium-dependent contraction (EDC) of rat renal artery to acetylcholine (ACh). ACh (10(-6), 10(-5), and 10(-4) M) induced a transient contraction of rat renal artery with intact endothelium in a concentration-related manner, but not in the artery with endothelium removed. In phenylephrine-precontracted renal arteries, ACh induced an endothelium-dependent relaxation response at lower concentrations (10(-8)-10(-6) M), and a relaxation followed by a contraction at higher concentrations (10(-5) M). Inhibition of nitric oxide synthase by N(omega)-nitro-L-arginine (10(-4) M) enhanced the EDC to ACh. Catalase (1000 U ml(-1)) reduced the EDC to ACh. H2O2 (10(-6), 10(-5), and 10(-4) M) induced a similar transient contraction of the renal arteries as ACh, but in an endothelium-independent manner. Inhibition of NAD(P)H oxidase and cyclooxygenase by diphenylliodonium chloride and diclofenac greatly attenuated ACh-induced EDC, while inhibition of xanthine oxidase (allopurinol) and cytochrome P450 monooxygenase (17-octadecynoic acid) did not affect the contraction. Antagonist of thromboxane A2 and prostaglandin H2 receptors (SQ 29548) and thromboxane A2 synthase inhibitor (furegrelate) attenuated the contraction to ACh and to H2O2. In isolated endothelial cells, ACh (10(-5) M) induced a transient H2O2 production detected with a fluorescence dye sensitive to H2O2 (2',7'-dichlorofluorescein diacetate). The peak concentration of H2O2 was 5.1 x 10(-4) M at 3 min and was prevented by catalase. Taken together, these results show that ACh triggers H2O2 production through NAD(P)H oxidase activation in the endothelial cells, and that ACh and H2O2 share the same signaling pathway in causing smooth muscle contraction. Therefore, H2O2 is most likely the EDCF in rat renal artery in response to ACh stimulation.
...
PMID:Hydrogen peroxide is an endothelium-dependent contracting factor in rat renal artery. 1623 Oct 1

The present study was undertaken to evaluate the contractile response of several E- and F-ring isoprostanes (IsoP) in human umbilical vein (HUV) and to investigate the role of the endothelium on the effect of 15-E2t-IsoP, the most potent vasoconstrictor isoprostane, in human vessels. HUV rings with or without endothelium were suspended in an organ bath for recording the isometric tension in response to different agonists. The inhibitors to be evaluated were applied 30 min before the addition of the agonist. All of the compounds tested produced concentration-dependent contractions when tested on HUV rings with endothelium. Although these compounds were equieffective, significant differences were observed in their potency, with U46619 being the most potent followed by 15-E2t-IsoP > 15-E1t-IsoP = 15-F2t-IsoP > 15-F1t-IsoP = 9-epi-15-F2t-IsoP in descending rank order of potency. 15-E2t-IsoP was the most potent of the isoprostanes evaluated and, therefore, the one employed in the present study. When intact endothelium HUV rings were used, 15-E2t-IsoP-induced contraction was unaffected by the endothelin-converting enzyme inhibitor, phosphoramidon (10 microM), suggesting that short-term endothelin-1 release is not involved in this response. However, the non-selective cyclooxygenase (COX) inhibitor, indomethacin (10 and 30 microM), and the COX-2 selective inhibitor, NS-398 (3, 10 and 30 microM) produced inhibitory effects on 15-E2t-IsoP-induced contraction of HUV rings with endothelium. These results indicate that COX-derived contractile prostanoids are involved in this effect. Furthermore, the apparent pKb values estimated for indomethacin (5.5) and NS-398 (5.4) suggest that the prostanoids involved are derived from the COX-2 isoenzyme pathway. On HUV rings with endothelium, the phospholipase A2 inhibitor, oleyloxyethyl phosphorylcholine (30 and 100 microM), induced an inhibitory effect on 15-E2t-IsoP-induced contraction, suggesting that the phospholipase A2 pathway is also involved in this effect. In addition, the thromboxane A2 synthase inhibitor furegrelate (10 and 30 microM) also inhibited 15-E2t-IsoP-induced contraction of HUV rings with endothelium, indicating that thromboxane A2 is one of the contractile prostanoids involved in this response. Endothelium denudation clearly diminished the vasoconstrictor potency of 15-E2t-IsoP, demonstrating that the endothelium releases a vasoconstrictor factor in response to 15-E2t-IsoP. The absence of an inhibitory effect at the highest concentration of furegrelate (30 microM) on 15-E2t-IsoP-induced contraction of HUV rings without endothelium suggested that endothelium is the source of thromboxane A2. We conclude that prostanoids derived from the COX-2 isoenzyme pathway participate in 15-E2t-IsoP-induced vasoconstriction of isolated HUV rings. Our results also indicate that endothelial thromboxane A2 is one of the prostanoids involved in this effect.
...
PMID:Involvement of endothelial thromboxane A2 in the vasoconstrictor response induced by 15-E2t-isoprostane in isolated human umbilical vein. 1673 77

Antimycotic agents are reported to improve cutaneous symptoms of atopic dermatitis or psoriasis vulgaris. Keratinocytes in these lesions excessively produce chemokines, CCL27, CCL2, or CCL5 which trigger inflammatory infiltrates. Tumor necrosis factor-alpha (TNF-alpha) induces production of these chemokines via activating nuclear factor-kappaB (NF-kappaB). We examined in vitro effects of antimycotics on TNF-alpha-induced CCL27, CCL2, and CCL5 production in human keratinocytes. Antimycotics ketoconazole and terbinafine hydrochloride suppressed TNF-alpha-induced CCL27, CCL2, and CCL5 secretion and mRNA expression in keratinocytes in parallel to the inhibition of NF-kappaB activity while fluconazole was ineffective. Anti-prostaglandin E2 (PGE2) antiserum or antisense oligonucleotides against PGE2 receptor EP2 or EP3 abrogated inhibitory effects of ketoconazole and terbinafine hydrochloride on TNF-alpha-induced NF-kappaB activity and CCL27, CCL2, and CCL5 production, indicating the involvement of endogenous PGE2 in the inhibitory effects. Prostaglandin H2, a precursor of PGE2 can be converted to thromboxane A2. Ketoconazole, terbinafine hydrochloride and thromboxane A2 synthase (EC 5.3.99.5) inhibitor, carboxyheptyl imidazole increased PGE2 release from keratinocytes and reduced that of thromboxane B2, a stable metabolite of thromboxane A2. Carboxyheptyl imidazole also suppressed TNF-alpha-induced NF-kappaB activity and CCL27, CCL2, and CCL5 production. These results suggest that ketoconazole and terbinafine hydrochloride may suppress TNF-alpha-induced NF-kappaB activity and CCL27, CCL2, and CCL5 production by increasing PGE2 release from keratinocytes. These antimycotics may suppress thromboxane A2 synthesis and redirect the conversion of PGH2 toward PGE2. These antimycotics may alleviate inflammatory infiltration in atopic dermatitis or psoriasis vulgaris by suppressing chemokine production.
...
PMID:Suppressive effects of antimycotics on tumor necrosis factor-alpha-induced CCL27, CCL2, and CCL5 production in human keratinocytes. 1678 23

Biochanin A (BCA), a phytoestrogen present in plant food and herbal products, has been reported to have cancer-preventive effects that may be mediated, in part, through effects on carcinogen metabolism. Our objective was to examine the effect of BCA on gene expression for drug-metabolizing enzymes and transporters in human hepatocytes. Cells were exposed to 20 muM of BCA for 5 days. Gene expression was assessed by a 96-gene human drug metabolism enzyme microarray. There were seven genes that were significantly up-regulated, namely cytochrome P-450 (CYP) 2A6, CYP2B6, CYP2C9, CYP2F1, multidrug resistance gene (MDR1), thromboxane A synthase 1 (TBXAS1), and SULT1A2 (sulfotransferase). Up-regulation of MDR1, which encodes for P-glycoprotein, was confirmed using real-time RT-PCR and Western analysis in hepatocytes as well as in human colon adenocarcinoma cell line (LS-180) and the induction was dose-dependent. BCA treatment up-regulated genes mainly in the CYP2 family. This induction can influence the metabolism of xenobiotics, producing effects of pharmacological and toxicological importance.
...
PMID:Effects of the flavonoid biochanin A on gene expression in primary human hepatocytes and human intestinal cells. 1734 May 76

The adrenal glands and sympathetic celiac ganglia are innervated mainly by the greater splanchnic nerves, which contain preganglionic sympathetic nerves that originated from the thoracic spinal cord. The adrenal medulla has two separate populations of chromaffin cells, adrenaline-containing cells (A-cells) and noradrenaline-containing cells (NA-cells), which have been shown to be differentially innervated by separate groups of the preganglionic sympathetic neurons. The present study was designed to characterize the centrally activating mechanisms of the adrenal A-cells, NA-cells and celiac sympathetic ganglia with expression of cFos (a marker for neural excitation), in regard to the brain prostanoids, in anesthetized rats. Intracerebroventricularly (i.c.v.) administered corticotropin-releasing factor (CRF) induced cFos expression in the adrenal A-cells, but not NA-cells, and celiac ganglia. On the other hand, i.c.v. administered arginine-vasopressin (AVP) resulted in cFos induction in both A-cells and NA-cells in the adrenal medulla, but not in the celiac ganglia. Intracerebroventricular pretreatment with indomethacin (an inhibitor of cyclooxygenase) abolished the CRF- and AVP-induced cFos expression in all regions described above. On the other hand, intracerebroventricular pretreatment with furegrelate (an inhibitor of thromboxane A2 synthase) abolished the CRF-induced cFos expression in the adrenal A-cells, but not in the celiac ganglia, and also abolished the AVP-induced cFos expression in both A-cells and NA-cells in the adrenal medulla. These results suggest that centrally administered CRF activates adrenal A-cells and celiac sympathetic ganglia by brain thromboxane A2-mediated and other prostanoid than thromboxane A2 (probably prostaglandin E2)-mediated mechanisms, respectively. On the other hand, centrally administered AVP activates adrenal A-cells and NA-cells by brain thromboxane A2-mediated mechanisms in rats.
...
PMID:Adrenal adrenaline- and noradrenaline-containing cells and celiac sympathetic ganglia are differentially controlled by centrally administered corticotropin-releasing factor and arginine-vasopressin in rats. 1735 Jun 15

Carnosic acid is a major phenolic diterpene derived from Rosmarinus officinalis and has been reported to have antioxidant, antibacterial, anticancer, antiobese and photoprotective activities. This study investigated the antiplatelet activity of carnosic acid. carnosic acid significantly inhibited collagen-, arachidonic acid-, U46619- and thrombin-induced washed rabbit platelet aggregation in a concentration-dependent manner, with IC50 values of 39+/-0.3, 34+/-1.8, 29+/-0.8 and 48+/-2.9 microM, respectively, while it failed to inhibit PMA-(a direct PKC activator) and ADP-induced platelet aggregation. In agreement with its antiplatelet activity, carnosic acid blocked collagen-, arachidonic acid-, U46619- and thrombin-mediated cytosolic calcium mobilization. accordingly, serotonin secretion and arachidonic acid liberation were also inhibited in a similar concentration-dependent manner. However, in contrast to the inhibition of arachidonic acid-induced platelet aggregation, carnosic acid had no effect on the formation of arachidonic acid-mediated thromboxane A2 and prostaglandin D2, thus indicating that carnosic acid has no effect on the cyclooxygenase and thromboxane A2 synthase activity. Overall, these results suggest that the antiplatelet activity of carnosic acid is mediated by the inhibition of cytosolic calcium mobilization and that carnosic acid has the potential of being developed as a novel antiplatelet agent.
...
PMID:Antiplatelet activity of carnosic acid, a phenolic diterpene from Rosmarinus officinalis. 1741 Jun 49

Plasma adrenaline mainly originated from adrenaline-containing cells in the adrenal medulla, while plasma noradrenaline reflects the release from sympathetic nerves in addition to the secretion from noradrenaline-containing cells in the adrenal medulla. The present study was undertaken to characterize the source of plasma catecholamines induced by centrally administered N-methyl-d-aspartate with regard to the brain prostanoid, using urethane-anesthetized rats. Intracerebroventricularly (i.c.v.) administered N-methyl-d-aspartate (1.0, 5.0, 10.0 nmol/animal) dose-dependently elevated plasma levels of noradrenaline and adrenaline. The N-methyl-d-aspartate (5.0 nmol/animal, i.c.v.)-induced elevation of both catecholamines was reduced by dizocilpine maleate (5 nmol/animal, i.c.v.), a non-competitive N-methyl-d-aspartate receptor antagonist. Indomethacin (0.6 and 1.2 micromol/animal, i.c.v.), an inhibitor of cyclooxygenase, dose-dependently reduced the N-methyl-d-aspartate (5.0 nmol/animal, i.c.v.)-induced elevation of both catecholamines. The N-methyl-d-aspartate-induced response was dose-dependently attenuated by furegrelate (0.9 and 1.8 micromol/animal, i.c.v.), an inhibitor of thromboxane A2 synthase. Furthermore, the acute bilateral adrenalectomy abolished the N-methyl-d-aspartate-induced responses, indicating that the source of increase in plasma noradrenaline evoked by N-methyl-d-aspartate is due to secretion from the adrenal gland and not due to release from sympathetic nerve terminals. These results suggest that centrally administered N-methyl-d-aspartate induces the secretion of noradrenaline and adrenaline from adrenal medulla by the brain thromboxane A2-mediated mechanisms in rats.
...
PMID:Centrally administered N-methyl-d-aspartate evokes the adrenal secretion of noradrenaline and adrenaline by brain thromboxane A2-mediated mechanisms in rats. 1837 30

Neuromedin U is a hypothalamic peptide involved in energy homeostasis and stress responses. The peptide, when administered intracerebroventricularly (i.c.v.), decreases food intake and body weight while increasing body temperature and heat production. We examined the effect of i.c.v. administered neuromedin U on plasma catecholamines with regard to the brain prostanoid using anesthetized rats. Neuromedin U (0.1, 0.5 and 1 nmol/animal, i.c.v.) effectively elevated plasma adrenaline (a maximal response was obtained at 0.5 nmol/animal), but had little effect on plasma noradrenaline. However, intravenously administered neuromedin U (0.5 nmol/animal) had no effect on plasma catecholamines. Neuromedin U (0.5 nmol/animal, i.c.v.)-induced elevation of plasma adrenaline was effectively reduced by intracerebroventricular pretreatments with indomethacin (an inhibitor of cyclooxygenase) (0.6 and 1.2 micromol/animal), furegrelate (an inhibitor of thromboxane A2 synthase) (0.9 and 1.8 micromol/animal) and (+)-S-145 (a blocker of prostanoid TP receptors) (250 and 625 nmol/animal), respectively. The neuromedin U-induced adrenaline response was also abolished by acute bilateral adrenalectomy. These results suggest that centrally administered neuromedin U evokes the secretion of adrenaline from the adrenal medulla by brain prostanoid TP receptor-mediated mechanisms in rats.
...
PMID:Centrally administered neuromedin U elevates plasma adrenaline by brain prostanoid TP receptor-mediated mechanisms in rats. 1864 1


<< Previous 1 2 3 4 5 6 7 8 9 10