Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: UNIPROT:P24557 (thromboxane A2 synthase)
124 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

2,3,5-Trimethyl-6-(3-pyridylmethyl)1,4-benzoquinone (CV-6504), an inhibitor of 5-lipoxygenase and thromboxane A2 synthase and a scavenger of active oxygen species, has been shown to exhibit profound anti-tumour activity against three established murine adenocarcinomas (MACs) that are generally refractory to standard cytotoxic agents. For the cachexia-inducing MAC16 tumour, optimal anti-tumour activity was seen at dose levels of 10 and 25 mg kg-1 day-1, together with a reversal of cachexia and a doubling of the time to sacrifice of the animals through cachexia from 8 days to 17 days. The remaining tumour fragments showed extensive necrosis in regions distal from the blood supply. Growth of the MAC13 tumour was also effectively suppressed at dose levels between 5 and 50 mg kg-1 day-1, resulting in a specific growth delay between 1.0 and 1.2. Growth of the MAC26 tumour was also inhibited a concentration-related manner, with doses of 25-50 mg kg-1 day-1 being optimal. Anti-tumour activity towards all three tumours at low dose levels of CV-6504 was effectively suppressed by concurrent administration of linoleic acid (1 g kg-1 day-1), suggesting that inhibition of linoleate metabolism was responsible for the anti-tumour effect. Tumour sensitivity may be correlated with increased DT-diaphorase that are required to metabolise CV-6504 to the active hydroquinone, which inhibits 5-lipoxygenase activity.
...
PMID:Novel anti-tumour activity of 2,3,5-trimethyl-6-(3-pyridylmethyl)-1,4- benzoquinone (CV-6504) against established murine adenocarcinomas (MAC). 863 Feb 77

Human thromboxane A2 synthase (TXAS) exhibits spectral characteristics of cytochrome P450 but lacks monooxygenase activity. Its distinctive amino acid sequence makes TXAS the sole member of family 5 in the P450 superfamily. To better understand the structure-function relationship of this unusual P450, we have recently constructed a three-dimensional model for TXAS using P450BM-3 as the template (Ruan, K.-H., Milfeld, K., Kulmacz, R. J., and Wu, K. K. (1994) Protein Eng. 7, 1345-1551) and have identified a potential active site region. The catalytic roles of several putative active site residues were evaluated using selectively mutated recombinant TXAS expressed in COS-1 cells. Mutation of Ala-408 to Glu or Arg-413 to Gly led to a complete loss of enzyme activity despite expression of mutant protein levels equivalent to that of the wild-type TXAS. Mutation of Ala-408 to Gly or Leu retained the enzyme activity at levels of 30 or 40%, respectively. This suggests that Ala-408 provides a hydrophobic environment for substrate binding. Mutation of Arg-413 to Lys or Gln completely abolished the enzyme activity, indicating that this residue is essential to catalytic activity and supports its identification as an active site residue. Mutation of Arg-410 to Gly or Glu-433 to Ala resulted in >50% reduction in the enzyme activity without appreciably altering mutant protein expression, consistent with a more subtle effect of these residues on TXAS catalytic efficiency. Mutation of residues predicted to be involved in binding the heme prosthetic group, including the heme thiolate ligand Cys-480, Arg-478, Phe-127, and Asn-110, each markedly reduced the expressed protein level and abolished enzyme activity. This suggests that proper heme binding is important to synthesis or stability of recombinant TXAS. Mutation of Ile-346, which corresponds to P450cam-Thr-252, an essential amino acid involved in dioxygen bond scission, to Thr increased the enzymatic activity by 40%, suggesting that oxygen bond cleavage is not a rate-limiting step in thromboxane A2 biosynthesis. The present results from site-directed mutagenesis support the overall structure of the TXAS active site predicted by homology modeling and have allowed refinement of the position of bound substrate.
...
PMID:Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis. 870 13

Patients with chronic myeloproliferative disease are at increased risk of both thromboembolic and haemorrhagic complications. Cerebral thrombosis is a common cause of death in myeloproliferative disease patients. Picotamide is a new anti-platelet drug sharing a dual anti-thromboxane activity: inhibition of thromboxane A2 synthase and thromboxane A2 receptor antagonism. Picotamide inhibits in vitro and ex vivo platelet aggregation induced by different agonists. Interestingly, in vitro studies show that picotamide is able to increase prostacycline biosynthesis. In the clinical setting, picotamide treatment induces only a slight prolongation of bleeding time. The safety and efficacy of picotamide long-term treatment in 15 patients with essential thrombocytosis and a positive history of previous thromboembolic events was evaluated. After 12-month treatment with picotamide no patients suffered from thrombotic events and only one minor and transient bleeding episode was observed. This observational long-term trial shows that picotamide treatment in patients with thrombocytosis at high risk of thrombotic events is safe and well tolerated. Picotamide did not increase the risk of bleeding in these patients, while at the same time, no thrombotic events were observed during the 1-year treatment.
...
PMID:Safety and efficacy of picotamide, a dual anti-thromboxane agent, in patients with thrombocytosis and a previous thromboembolic event: a 1-year observational study. 872 94

Thromboxane A2 accumulates in the hippocampus after global ischemia and may play a key role in postischemic hypoperfusion. Thromboxane synthetase inhibitor (OKY-046) inhibits the accumulation of thromboxane A2 and promotes prostacycline production. Therefore, we set out to determine whether the inhibition of thromboxane synthesis would ameriolate postischemic neuronal death. Three groups of six Mongolian gerbils were subjected to different treatments: untreated control, untreated ischemia, and treated ischemia. Immediately after forebrain ischemia, OKY-046 (10 mg/kg) was injected intraperitoneally into the treated group. After 7 days of survival, the histopathology of the brain was examined. Pyramidal cell density in the CA1 sector in the treated group was 147 +/- 70 nuclei/mm (mean +/- SD), which was significantly (p < 0.05) higher than than in the untreated group (33 +/- 10 (nuclei/mm). The findings were 231 +/- 7 nuclei/mm for the control group. No significant difference was seen in the profile of temporal muscle temperature before and after ischemia between the groups. Ultrastructurally, the vessels in the CAI sector showed lumen patency in the treated group, whereas occluded vessels with an extended perivascular space were observed in the untreated group. Thromboxane synthetase inhibitor thus partly ameliorates the selective vulnerability of the hippocampus after forebrain ischemia, suggesting that thromboxane A2 is involved in the development of delayed neuronal death, independently of any thermal effect.
...
PMID:Thromboxane synthetase inhibitor ameliorates delayed neuronal death in the CA1 subfield of the hippocampus after transient global ischemia in gerbils. 880 37

We investigated the effects of (2R)-2-amino-N-(2,6-dimethylphenyl)-N-[3-(3-pyridyl)propyl]propionamide D-tartrate (Ro 22-9194), a novel class I antiarrhythmic agent, on myocardial ischemia- and reperfusion-induced arrhythmias in dogs. The incidence of ventricular fibrillation induced by reperfusion after a 30-min coronary ligation was significantly reduced by an i.v. infusion of Ro 22-9194 (10 mg/kg for 5 min before and an additional 20 mg/kg for 30 min during coronary ligation: total, 30 mg/kg) from 73% in the vehicle-treated group to 13%. Ro 22-9194 (20 and 30 mg/kg) also dose-dependently reduced the incidence of ventricular arrhythmias, including ventricular tachycardia and ventricular fibrillation, after coronary reperfusion. Other class I antiarrhythmic agents, mexiletine (15 mg/kg) and disopyramide (7.5 mg/kg), did not inhibit the development of ventricular fibrillation. In in vitro studies, Ro 22-9194, but neither mexiletine nor disopyramide (approximately 10(-3) M), inhibited thromboxane A2 synthase and arachidonic acid-induced aggregation of human platelets (IC50: 1.2 x 10(-5) M and 3.4 x 10(-5) M, respectively). Furthermore, Ro 22-9194 (30 mg/kg) attenuated the increase in venous thromboxane B2 concentrations in the local coronary vein during coronary ligation in dogs. A thromboxane A2 synthase inhibitor, OKY-046 (2.5 mg/kg administered for 5 min before coronary ligation) also showed no evident increases in thromboxane B2 concentrations as well as an antifibrillatory effect. Venous 6-keto-prostaglandin F1 alpha concentrations were not affected by either Ro 22-9194 or OKY-046. These results demonstrate that, unlike mexiletine and disopyramide, Ro 22-9194 protects against reperfusion-induced fatal ventricular arrhythmias in dogs. They also suggest that, in addition to the class I antiarrhythmic effect, the thromboxane A2 synthase inhibitory activity may contribute to the antiarrhythmic properties of Ro 22-9194.
...
PMID:Effects of the new class I antiarrhythmic agent Ro 22-9194, (2R)-2-amino-N-(2,6-dimethylphenyl)-N-[3-(3-pyridyl)propyl]propionamide D-tartrate, on ischemia- and reperfusion-induced arrhythmias in dogs: involvement of thromboxane A2 synthase inhibitory activity. 893 Jan 95

The antinephritic effect of DP-1904 [6-(1-imidazolylmethyl)-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid hydrochloride], a thromboxane A2 synthase inhibitor, was evaluated using an experimental model of membranous nephropathy, viz. accelerated passive Heymann nephritis in which the glomerular injury is mediated by immune complexes. DP-1904 markedly inhibited the develop-ent of glomerular alteration as well as the elevation of proteinuria and plasma creatinine. When the treatment was started from the 22nd day, at which time proteinuria is fully developed, DP-1904 showed beneficial effects on proteinuria and glomerular histopathological changes. DP-1904 apparently decreased the deposition of both rabbit immunoglobulin G and rat immunoglobulin G on glomerular basement membrane in nephritic rats. A single administration of DP-1904 restored the decreased renal tissue blood flow, inhibited glomerular thromboxane B2 production and increased glomerular prostaglandin E2 and 6-keto prostaglandin F1 alpha production in nephritic rats. These results suggest that DP-1904 may be an effective agent for the treatment of idiopathic membranous nephropathy and that the beneficial effect of this drug may be due to the elimination of glomerular immune deposits and to an increase in renal tissue blood flow related to amelioration of the abnormal metabolism of arachidonic acid.
...
PMID:Effect of DP-1904, a thromboxane A2 synthase inhibitor, on passive Heymann nephritis in rats. 898 53

We examined whether or not cyclo-oxygenase products of arachidonic acid and endothelium-derived relaxing factor (nitric oxide, NO) regulate the vascular response to angiotensin II differently with aging or development. For this purpose angiotensin II responses of isolated, perfused rat mesenteric vascular beds were compared between rats aged 4 weeks and 32 weeks. Angiotensin II increased perfusion pressure in arteries and veins of both rats aged 4 weeks and 32 weeks. In the arteries of rats aged 32 weeks the increase was slight, and less than that in rats aged 4 weeks. In contrast, the veins showed similar increases in perfusion pressure in rats aged 4 weeks and 32 weeks. Indomethacin, an inhibitor of cyclo-oxygenase, at 5 x 10(-6) M depressed the increase in perfusion pressure only in the arteries of rats aged 32 weeks. NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthase, applied at 5 x 10(-6) M in the presence of indomethacin enlarged the perfusion pressure increase in the arteries of both rats aged 4 weeks and 32 weeks, while it failed to modify that in the veins. After removal of the endothelium from the blood vessels, the perfusion pressure responses in arteries were increased in both rats aged 4 weeks and 32 weeks, whereas those in veins were not affected. Regardless of the endothelium being intact or removed, the increase in arterial perfusion pressure of rats aged 32 weeks all but disappeared with 5 x 10(-6) M furegrelate, an inhibitor of thromboxane A2 synthase, and with a combined application of furegrelate and 10(-6) M SQ29,548, a blocker of thromboxane A2/prostaglandin H2 receptors. These results indicate the following: in rat mesenteric vascular beds the angiotensin II response in the arteries appears to diminish with aging or development, whereas that in the veins does not change. The NO released from the endothelium regulates the arterial response but vasodilating prostanoids have no role in the response. Moreover, in the arteries of rats aged 32 weeks, vasoconstricting prostanoids, such as prostaglandin H2 and thromboxane A2, seem to play a role in angiotensin II-induced vasoconstriction. With aging or development, and depending on the type of blood vessel, NO and prostanoids appear to modify the angiotensin II response differently.
...
PMID:Age-related differences and roles of endothelial nitric oxide and prostanoids in angiotensin II responses of isolated, perfused mesenteric arteries and veins of rats. 905 51

1. The role of eicosanoids in altered membrane electrical properties of Dahl salt-sensitive (DS) rats was investigated, by use of conventional microelectrodes technique, in isolated superior mesenteric arteries of DS rats and Dahl salt-resistant (DR) rats fed either a high or low salt diet. 2. The membrane was significantly depolarized in salt-loaded DS rats compared with the other three groups. In addition, the arteries of salt-loaded DS rats exhibited spontaneous electrical activity. 3. Spontaneous electrical activity in salt-loaded DS rats was inhibited by the following: indomethacin, a cyclo-oxygenase inhibitor; ONO-3708, a prostaglandin H2/thromboxane A2 receptor antagonist; OKY-046, a thromboxane A2 synthase inhibitor; nicardipine, a Ca(2+)-channel antagonist and by Ca(2+)-free solution. In addition, spontaneous electrical activity was enhanced by a thromboxane A2 analogue and by prostaglandin H2. Spontaneous electrical activity was unaffected by phentolamine, atropine and tetrodotoxin. 4. Membrane potential in arteries of salt-loaded DS rats was not affected by either indomethacin or ONO-3708. 5. Spontaneous contraction, sensitive to indomethacin, was present, and contractile sensitivity to high potassium solution was enhanced in arteries of salt-loaded DS rats. 6. These findings suggest that eicosanoid action, together with membrane depolarization, may lead to the activation of voltage-dependent Ca(2+)-channels, thereby causing spontaneous electrical activity in mesenteric arteries of salt-loaded DS rats. In addition, tension data suggest that these changes in membrane properties are related to enhanced contractile activities in salt-loaded DS rats. Mechanisms of depolarization remain to be determined.
...
PMID:Role of eicosanoids in alteration of membrane electrical properties in isolated mesenteric arteries of salt-loaded, Dahl salt-sensitive rats. 910 94

Percutaneous transluminal angioplasty is an acute, local stimulus to platelets which activation is regarded as an important factor for a later restenosis. The balance between the production of prostacyclin and thromboxane A2 is of (patho)physiological importance due to their opposite actions on vascular tone and platelet reactivity. In this study we investigated the influence of percutaneous transluminal angioplasty of the peripheral arteries on prostacyclin and thromboxane A2 productions in vivo by measuring the excretions of their urinary index metabolites, 2,3-dinor-6-ketoprostaglandin F1 alpha and 11-dehydrothromboxane B2, respectively, in 10 patients. We found a twofold increase in thromboxane A2, but no significant change in prostacyclin, production after peripheral transluminal angioplasty which shifted prostacyclin/thromboxane A2 balance to the direction of thromboxane A2 formation. This gives theoretical support to the use of thromboxane A2 synthase inhibitors and receptor antagonists as well as prostacyclin analogues in combination with peripheral percutaneous transluminal angioplasty to prevent thrombosis and restenosis.
...
PMID:Percutaneous transluminal angioplasty increases thromboxane A2 production in claudicants. 917 73

To investigate the nature of the arachidonic acid metabolite involved in the altered reactivity of microvessels of two-kidney, one-clip hypertensive rats and the possible contribution of this product to the elevated blood pressure levels found in two-kidney, one-clip hypertension, mesenteric arterioles either perfused in vitro or studied in vivo were used along with blood pressure determinations. The decreased response to acetylcholine observed was normalized by ridogrel, a thromboxane A2 receptor antagonist, and dazoxiben, a thromboxane A2 synthase inhibitor. The smooth muscle response to nitric oxide, tested with sodium nitroprusside, was unaltered in two-kidney, one-clip hypertensive microvessels. Neither ridogrel nor dazoxiben modified the response to this vasodilator. In contrast, the potentiated response to noradrenaline was corrected by ridogrel and dazoxiben in vitro but not in vivo. Noradrenaline and acetylcholine increased the release of thromboxane A2 from the mesenteric microvessels of two-kidney, one-clip hypertensive rats. Ridogrel and dazoxiben decreased but did not normalize the elevated blood pressure of hypertensive rats. Based on these results, we concluded that: 1) the decreased responsiveness of smooth muscle to acetylcholine resulted from an increase in thromboxane A2 formation rather than a decrease in sensitivity to nitric oxide; 2) thromboxane A2 contributes to the increased noradrenaline response in mesenteric microvessels perfused in vitro while in in vivo other blood borne vasoactive agents may also be involved since the potentiated noradrenaline response was not corrected by inhibiting thromboxane A2 synthesis or receptors; 3) in addition to thromboxane A2, another as yet unidentified factor, may contribute to the elevated blood pressure in two-kidney, one-clip hypertension.
...
PMID:The role of thromboxane A2 in the altered microvascular reactivity in two-kidney, one-clip hypertension. 927 80


<< Previous 1 2 3 4 5 6 7 8 9 10 Next >>