Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: UNIPROT:P01730 (CD4 molecule)
812 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

Cluster determinant 4 (CD4) is a type I transmembrane glycoprotein of 58 kDa. It consists of an extracellular domain of 370 amino acids, a short transmembrane region, and a cytoplasmic domain of 40 amino acids at the C-terminal end. We investigated the structure of the 62 C-terminal residues of CD4, comprising its transmembrane and cytoplasmic domains. The five cysteine residues of this region have been replaced with serine and histidine residues in the polypeptide CD4mut. Uniformly 15N and 13C labeled protein was recombinantly expressed in E. coli and purified. Functional binding activity of CD4mut to protein VpU of the human immunodeficiency virus type 1 (HIV-1) was verified. Close to complete NMR resonance assignment of the 1H, 13C, and 15N spins of CD4mut was accomplished. The secondary structure of CD4mut in membrane simulating dodecylphosphocholine (DPC) micelles was characterized based on secondary chemical shift analysis, NOE-based proton-proton distances, and circular dichroism spectroscopy. A stable transmembrane helix and a short amphipathic helix in the cytoplasmic region were identified. The fractional helicity of the cytoplasmic helix appears to be stabilized in the presence of DPC micelles, although the extension of this helix is reduced in comparison to previous studies on synthetic peptides in aqueous solution. The role of the amphipathic helix and its potentially variable length is discussed with respect to the biological functions of CD4.
...
PMID:Structural characterization of the transmembrane and cytoplasmic domains of human CD4. 1803 40

The immunodeficiency observed in HIV-1-infected patients is mainly due to uninfected bystander CD4+ T lymphocyte cell death. The viral envelope glycoproteins (Env), expressed at the surface of infected cells, play a key role in this process. Env triggers macroautophagy/autophagy, a process necessary for subsequent apoptosis, and the production of reactive oxygen species (ROS) in bystander CD4+ T cells. Here, we demonstrate that Env-induced oxidative stress is responsible for their death by apoptosis. Moreover, we report that peroxisomes, organelles involved in the control of oxidative stress, are targeted by Env-mediated autophagy. Indeed, we observe a selective autophagy-dependent decrease in the expression of peroxisomal proteins, CAT and PEX14, upon Env exposure; the downregulation of either BECN1 or SQSTM1/p62 restores their expression levels. Fluorescence studies allowed us to conclude that Env-mediated autophagy degrades these entire organelles and specifically the mature ones. Together, our results on Env-induced pexophagy provide new clues on HIV-1-induced immunodeficiency. Abbreviations: Ab: antibodies; AF: auranofin; AP: anti-proteases; ART: antiretroviral therapy; BafA1: bafilomycin A1; BECN1: beclin 1; CAT: catalase; CD4: CD4 molecule; CXCR4: C-X-C motif chemokine receptor 4; DHR123: dihydrorhodamine 123; Env: HIV-1 envelope glycoproteins; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GFP-SKL: GFP-serine-lysine-leucine; HEK: human embryonic kidney; HIV-1: type 1 human immunodeficiency virus; HTRF: homogeneous time resolved fluorescence; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NAC: N-acetyl-cysteine; PARP: poly(ADP-ribose) polymerase; PEX: peroxin; ROS: reactive oxygen species; siRNA: small interfering ribonucleic acid; SQSTM1/p62: sequestosome 1.
...
PMID:HIV-1 Env induces pexophagy and an oxidative stress leading to uninfected CD4+ T cell death. 3307 73


<< Previous 1 2