Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Pivot Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Target Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Query: HUMANGGP:026885 (
GAMT
)
50
document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)
Metabolic studies of 3'-azido-3'-deoxythymidine (AZT) in humans have demonstrated that this compound is primarily eliminated as a 5'-O-glucuronide, 3'-azido-3'-deoxy-5'-beta-D-glucopyranuronosylthymidine (GAZT), accounting for approximately 80% of the administered dose. Recently, we characterized the complete catabolic pathway of AZT in freshly isolated rat hepatocytes in suspension, demonstrating extensive formation of three catabolites, including GAZT, 3'-amino-3'-deoxythymidine (AMT), and 3'-amino-3'-deoxy-5'-beta-D-glucopyranuronosylthymidine (
GAMT
). The present study evaluated the effects of probenecid (PROB) and acetaminophen (ACET), two agents which are also metabolized by
UDP-glucuronyltransferase
, on the metabolism and transmembrane distribution of AZT in rat hepatocytes. Pre-exposure of cells to 350 microM PROB 30 min prior to the addition of 10 microM [3H]AZT decreased intracellular GAZT levels by approximately 10-fold. Interestingly, AMT formation was enhanced approximately 1.5-fold in the presence of PROB, probably resulting from increased AZT availability. In contract, pre-exposure to 50 microM ACET 30 min prior to addition of 10 microM [3H]AZT did not substantially alter AZT glucuronidation. Additionally, decreased AZT catabolism by PROB did not contribute to the formation of 5'-phosphorylated derivatives of AZT. Agents which undergo glucuronidation may thus not necessarily affect AZT conversion to GAZT, and their potential interactions should be investigated using in vitro systems prior to co-administration with AZT.
...
PMID:Modulation of 3'-azido-3'-deoxythymidine catabolism by probenecid and acetaminophen in freshly isolated rat hepatocytes. 193 Feb 71
Metabolic studies in humans have demonstrated that 3'-azido-3'-deoxythymidine (AZT) is primarily eliminated as its 5'-O-glucuronide (GAZT). However, no detailed cellular metabolic studies have been reported on the complete catabolic fate of AZT at the hepatic site. Because the liver is probably the major site of AZT catabolism, the metabolism and transmembrane distribution of AZT were evaluated in freshly isolated rat hepatocytes, a model for the study at the cellular level of biosynthetic, catabolic, and transport phenomena in the liver. Following exposure of cells to 10 microM [3H]AZT, the predominant intracellular catabolite was GAZT, which reached a concentration of approximately 22 microM by 60 min. Additionally, under nonreducing conditions substantial levels of two previously unidentified AZT catabolites that were formed at the hepatic site and were distinct from any known anabolites or catabolites were also detected. These catabolites were identified as 3'-amino-3'-deoxythymidine (AMT) by fast atom bombardment mass spectrometry and 3'-amino-3'-deoxythymidine glucuronide (
GAMT
) through specific enzymatic hydrolysis. However, AMT was not a substrate for
uridine 5'-diphosphoglucuronyltransferase
and
GAMT
was found to be a reductive product of GAZT. Studies using rat and human liver microsomes demonstrated that the rate of formation of AMT and
GAMT
increased in the presence of NADPH, suggesting the involvement of a NADPH-dependent enzyme system. Studies using human hematopoietic progenitor cells demonstrated that AMT was 5- to 7-fold more toxic to human colony-forming units granulocyte-macrophage and burst-forming units erythroid than was AZT. This study provides the first detailed catabolic profile of AZT at the hepatic site and emphasizes the critical role that the liver plays in drug clearance. Formation of AMT, a highly toxic catabolite of AZT, raises a question regarding the role of AMT in the cytotoxic effects of AZT observed in patients.
...
PMID:Catabolism of 3'-azido-3'-deoxythymidine in hepatocytes and liver microsomes, with evidence of formation of 3'-amino-3'-deoxythymidine, a highly toxic catabolite for human bone marrow cells. 199 84