Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: HUMANGGP:017982 (all-trans)
8,950 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

The sodium/iodide symporter (NIS) mediates iodide uptake in lactating breast tissue and is expressed in some breast cancers. We have previously demonstrated that all-trans retinoic acid (tRA) stimulates NIS gene expression and the selective cytotoxic effect of beta-emitting radioiodide-131 ((131)I) in both in vitro and in vivo MCF-7 breast cancer cell systems. We studied the ability of natural and synthetic retinoids, in combination with other nuclear receptor ligands, to achieve greater and more sustained induction of NIS in MCF-7 cells and enhance (131)I-mediated cytotoxicity. Selective stimulation of retinoic acid receptor (RAR) beta/gamma produced marked NIS induction; and selective stimulation of RARalpha, RARgamma, or retinoid X receptor produced more modest induction. Maximal NIS induction was seen with 9-cis retinoic acid and AGN190168, a RAR beta/gamma-agonist. Dexamethasone (Dex), but not the other nuclear receptor ligands, in combination with tRA synergistically induced iodide uptake and NIS mRNA expression, predominantly by prolonging NIS mRNA half-life. The addition of Dex reduced the EC(50) of tRA for NIS stimulation to approximately 7%, such that 10(-7) m tRA with addition of Dex enhanced iodide uptake and selective cytotoxicity of (131)I greater than 10(-6) m tRA alone. AGN190168 combined with Dex synergistically increased iodide uptake and significantly prolonged induction (5 d) of iodide uptake compared with that induced by the combination of tRA/Dex or 9-cis retinoic acid/Dex. The addition of Dex reduced the effective dose of retinoid and prolonged the induction of NIS, especially with AGN190168, suggesting higher efficacy of (131)I after combination treatment.
...
PMID:Differential regulation of sodium/iodide symporter gene expression by nuclear receptor ligands in MCF-7 breast cancer cells. 1581 68

Human breast cancer cell lines expressing the estrogen receptor alpha (ERalpha), all-trans-retinoic acid (ATRA) receptor alpha (RARalpha) and cellular retinoic acid binding protein II (CRABPII) genes are sensitive to ATRA-mediated growth inhibition. To study the relationship among ERalpha, RARalpha and CRABPII expression, the protein levels of each member were compared in five breast cancer cell lines (T47D, MCF-7, ZR-75-1, Hs587 T and MDA-MB-231 cells) and two immortalized nontumorigenic breast epithelial cell lines (MTSV1.7 and MCF-10A). ERalpha, RARalpha and CRABPII proteins were detected in T47D, MCF-7 and ZR-75-1 cells but not in other tested cell lines. RARalpha and CRABPII proteins were either reduced or undetectable in T47D/C4:2W and MCF-7/ADR cells with lost expression of ERalpha. Estradiol increased and anti-estrogens (tamoxifen and ICI 164,384) downregulated the expression of both RARalpha and CRABPII proteins in T47D and MCF-7 cells. RARalpha antagonist Ro-41-5253 inhibited CRABPII expression, but not RARalpha expression in estradiol-treated T47D and MCF-7 cells. Suppression of ERalpha by small interfering RNA (siRNA) reduced RARalpha and CRABPII gene expression and siRNA suppression of RARalpha reduced CRABPII expression while having no effect on ERalpha in T47D cells. Transient transfection of either RARalpha or ERalpha expression vectors increased CRABPII expression in MDA-MB-231 cells but only RARalpha, not ERalpha, activated hCRABPII promoter reporter. These results indicate that there is a gene activation pathway in which ERalpha drives RARalpha transcription and RARalpha drives CRABPII transcription in ERalpha-positive human breast cancer cells.
...
PMID:Expression of estrogen receptor alpha, retinoic acid receptor alpha and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. 1587 Jun 97

Approximately 30-40% of estrogen receptor alpha (ERalpha)-positive breast tumors express high levels of the cyclooxygenase-2 (COX-2) protein, and these high levels have been associated with a poorer prognosis in breast cancer patients. We speculate that high levels of COX-2 induce drug resistance in ERalpha-positive breast tumors, thus reducing the survival rate of patients with such tumors. Human breast cancer cell lines that express high levels of COX-2 are generally ERalpha negative. To determine whether COX-2 induces drug resistance, plasmids encoding the COX-2 gene were stably transfected into ERalpha-positive MCF-7 human breast cancer cells (MCF-7/COX-2). MCF-7/COX-2 cells were resistant to the selective estrogen receptor modulator tamoxifen but not to its analog, raloxifene. MCF-7/COX-2 cells were also resistant to the retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) but not to its analog, all-trans retinoic acid. In contrast, the sensitivities of MCF-7/COX-2 cells to doxorubicin and paclitaxel were similar to those of the parental MCF-7 cells. We then determined which COX-2 product, prostaglandin E2 (PGE2) or prostaglandin F2alpha is involved in the COX-2-mediated drug resistance. PGE2, but not PGF2alpha, blocked the antiproliferative effects of tamoxifen and 4-HPR. Agonists that activate PGE2 receptors and their downstream kinase effectors, protein kinases A and C, also blocked the growth inhibitory effects of these drugs. Increased levels of Bcl-2 and Bcl-XL proteins have been reported in mammary tumors of COX-2 transgenic mice and in human colon cancer cell lines that have high levels of COX-2. However, we did not observe any changes in Bcl-2, Bcl-XL, or Bax expression induced by COX-2 or PGE2. Here we report the novel findings that COX-2 uses PGE2 to stimulate the activities of protein kinases A and C to induce selectively tamoxifen and 4-HPR resistance in ERalpha-positive breast cancer cells.
...
PMID:Cyclooxygenase-2 protein reduces tamoxifen and N-(4-hydroxyphenyl)retinamide inhibitory effects in breast cancer cells. 1612 22

The membrane receptor Fas (Apo-1/CD95) is an important initiator of programmed cell death induced by anti-Fas antibody or Fas ligand. MCF-7 human breast cancer cells have low levels of Fas receptor (FasR) and are resistant to anti-FasR antibody mediated apoptosis, however two naturally occurring substances, interferon and all-trans retinoic acid (AT), act synergistically to enhance antiproliferative processes in these cells, suggesting this combination may also be an effective means for enhancing FasR expression. When this was studied, it was found that IFN-gamma and AT in combination acted synergistically to induce expression of FasR mRNA and FasR protein in a time-dependent and dose-dependent manner. This induction required continuous protein synthesis, and STAT1 protein, but not PKR or TR1 protein, was induced in a manner quantitatively and temporally related to FasR protein induction, and consistent with STAT1 mediation of the synergistic effect of IFN-gamma and AT on FasR expression. FasR-induced cells were resistant to stimulation of apoptosis by anti-FasR antibody, however treatment with cycloheximide rendered these cells sensitive to antibody-induced apoptosis, suggesting endogenous blockade to signaling. These cells did not express caspase 3, or FLIP(L), but strongly expressed the endogenous inhibitor of apoptosis Bcl-2, indicating a type II Fas signaling pathway. Expression of these proteins was not modulated by IFN/AT, however treatment of Fas-induced cells with Bcl-2 specific small interfering RNA (SiRNA) downregulated Bcl-2 protein expression and rendered these cells sensitive to the cytotoxic effects of anti-Fas antibody. These findings indicate that IFN-gamma+AT in combination modulate Fas signaling and provide a novel mechanism for the promotion of cell death in breast cancer cells.
...
PMID:Conversion of Fas-resistant to Fas-sensitive MCF-7 breast cancer cells by the synergistic interaction of interferon-gamma and all-trans retinoic acid. 1613 69

Lactoferrin (Lf) is a multifunctional iron-binding protein that was first identified in mammary secretions, but is synthesized by most mammalian tissues. The protein has a signal sequence that dictates secretion; it also has a nuclear localization sequence that facilitates entry into the cell nucleus. The mechanism of the latter action is currently unknown, but is thought to occur via a Lf receptor. Lactoferrin content of mammary tissue and secretions varies with developmental state; it is synthesized in mammary tissue at high levels during both pregnancy and involution, and during mammary infections. Using fluorescent (FITC)-labeled holo-bLf, we show that bovine primary epithelial cells and MCF-7 breast cancer cells do not translocate the exogenously added Lf to the nucleus after culture in serum free media (SFM). However, the supplementation of SFM with 1microM all-trans retinoic acid (atRA) caused breast cancer cells to gain the capacity to take up labeled bLf into the cell nucleus. Primary bovine mammary cells (MeBo) exhibited similar capacity in culture. This suggests that in addition to Lf, one or more components modulated by atRA, are necessary for nuclear translocation to occur. Transfection experiments with atRA treated MCF-7 cells containing retinoic acid response element reporter constructs showed that the extracellular application of lactoferrin alters reporter gene expression. Lactoferrin increased a DR5 luciferase response element in a dose-dependent manner only when atRA was applied. Immunocytochemical markers for the cell cycle (Ki67) and apoptotic events (Caspase-3 and PARP-85) showed that lactoferrin alters the atRA-induced phenotype, blocking apoptosis and maintaining cell cycle activity in both MCF-7 and MeBo cells in the presence of 1muM atRA. We propose that nuclear lactoferrin interacts with retinoic acid signaling pathways in cells and alters/blocks the signals so that cells remain in the cell cycle and/or do not enter the apoptotic pathway.
...
PMID:Lactoferrin interaction with retinoid signaling: cell growth and apoptosis in mammary cells. 1616 21

A series of p-alkylaminophenols including 3, p-butylaminophenol; 4, p-hexylaminophenol; 5, p-octylaminophenol; and 6, N-(p-methoxybenzyl)aminophenol were synthesized based on the structure of fenretinide, N-(4-hydroxyphenyl)retinamide (1). This latter agent is a synthetic amide of all-trans-retinoic acid (RA), which is a cancer chemopreventive and antiproliferative agent. It was found that elongation of the alkyl chain length in these compounds increased antioxidative activity and inhibition of lipid peroxidation. These findings led us to investigate whether antiproliferative activity against cancer cells was effected by the length of alkyl chains linked to the aminophenol residue. All p-alkylaminophenols inhibited growth of HL60 and HL60R cells in a dose-dependent manners. The HL60R line is a resistant clone against RA. Growth of various cancer cell lines (HL60, HL60R, MCF-7, MCF-7/Adr(R), HepG2, and DU-145) was suppressed by p-alkylaminophenols in a fashion dependent on the aminophenol alkyl chain length (5>4>3>p-methylaminophenol (2)), with 5 being the most potent inhibitor of cell growth against HL60R, MCF-7/Adr(R), and DU-145 cells among p-alkylaminophenols tested, including 1. In particular, with the exception of compound 2, antiproliferative activity against DU-145 cells by these p-alkylaminophenols was greater than by 1. In HL60 cells, growth inhibition was associated with apoptosis. On the other hand, elongation of the alkyl chain length reduced superoxide trapping capability (2>3>4>5) in contrast to the effects on inhibition of lipid peroxidation. These results indicate that anticancer activity of p-alkylaminophenols correlated with the inhibitory activity of lipid peroxidation, but not with the superoxide scavenging activity.
...
PMID:Anticancer and superoxide scavenging activities of p-alkylaminophenols having various length alkyl chains. 1620 49

The sodium/iodide symporter (NIS) mediates a remarkably effective targeted radioiodide therapy in thyroid cancer; this approach is an emerging candidate for treating other cancers that express NIS, whether endogenously or by exogenous gene transfer. Thus far, the only extrathyroidal malignancy known to express functional NIS endogenously is breast cancer. Therapeutic efficacy in thyroid cancer requires that radioiodide uptake be maximized in tumor cells by manipulating well-known regulatory factors of NIS expression in thyroid cells, such as TSH, which stimulates NIS expression via cAMP. Similarly, therapeutic efficacy in breast cancer will likely depend on manipulating NIS regulation in mammary cells, which differs from that in the thyroid. Human breast adenocarcinoma MCF-7 cells modestly express endogenous NIS when treated with all-trans-retinoic acid (tRa). We report here that hydrocortisone and ATP each markedly stimulates tRa-induced NIS protein expression and plasma membrane targeting in MCF-7 cells, leading to at least a 100% increase in iodide uptake. Surprisingly, the adenyl cyclase activator forskolin, which promotes NIS expression in thyroid cells, markedly decreases tRa-induced NIS protein expression in MCF-7 cells. Isobutylmethylxanthine increases tRa-induced NIS expression in MCF-7 cells, probably through a purinergic signaling system independent of isobutylmethylxanthine's action as a phosphodiesterase inhibitor. We also observed that neither iodide, which at high concentrations down-regulates NIS in the thyroid, nor cAMP has a significant effect on NIS expression in MCF-7 cells. Our findings may open new strategies for breast-selective pharmacological modulation of functional NIS expression, thus improving the feasibility of using radioiodide to effectively treat breast cancer.
...
PMID:Hydrocortisone and purinergic signaling stimulate sodium/iodide symporter (NIS)-mediated iodide transport in breast cancer cells. 1643 63

RESTIN, a member of the melanoma-associated antigen superfamily, is a nuclear protein induced by atRA (all-trans retinoic acid) in HL60 cells. HeLa cells stably transfected with restin results in G1 cell cycle arrest. How this gene is regulated by atRA in the cell differentiation process is still unclear. In this study, we observed that up-regulation of restin was present during the atRA-induced HL60 cell differentiation process, suggesting the functional relevance between RESTIN and atRA-induced cellular effects. In order to further define the transcriptional regulation of restin by atRA, we analyzed the promoter region of restin. About 2.1kb 5' flanking sequence of this gene was cloned into vector pGL3 and its core promoter region was identified through systemic deletions. Interestingly, restin promoter containing several potential consensus-binding sites of STAT-1alpha was activated by atRA in ER(+) MCF-7 cells but not in ER(-) MDA-MB-231 cells, over-expression of STAT-1alpha in latter rescued the activation effect of restin promoter in response to atRA and IFNgamma. Our evidence supported that STAT-1alpha plays an important role in the atRA-induced transcriptional up-regulation of restin, which was associated with the atRA-induced HL60 cell differentiation and potentially mediated the downstream effects of atRA signal pathway via STAT-1alpha in some cancer cells.
...
PMID:Transcriptional up-regulation of restin by all-trans retinoic acid through STAT1 in cancer cell differentiation process. 1657 66

All-trans-retinoic acid and the tumor suppressor promyelocytic leukemia protein (PML) are potent regulators of the growth of cancer cells. This study investigates the individual and combined effects of PML, when overexpressed by the recombinant PML adenovirus, and all-trans-retinoic acid on the proliferation of human estrogen-receptor negative SKBR-3 and estrogen-receptor positive MCF-7 breast cancer cell lines. All-trans-retinoic acid caused a significant degree of cell death in SKBR-3 cells and MCF-7 cells, and PML elicited a similar incidence of or slightly more cell death in MCF-7 cells. Dual-treated cells displayed significantly less cell death than did single-treated cells in the same cell line. We concluded that PML and all-trans-retinoic acid cause cell death by different pathways: PML activates ERK1/2, p38 MAPK, and p21; arrests the cell cycle; and later causes cell death; and all-trans-retinoic acid activates proteasome function, caspase cleavage, and apoptosis. The combined use of all-trans-retinoic acid and PML gene therapy may not be the best treatment for patients with cancer, because the ubiquitinylation of PML and its subsequent proteasome-dependent degradation by retinoic acids occur before overexpressed PML exhibits tumor-suppressive activity.
...
PMID:Retinoic acid attenuates promyelocytic leukemia protein-induced cell death in breast cancer cells by activation of the ubiquitin-proteasome pathway. 1674 Mar 59

The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor beta (TGFbeta) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGFbeta treatment, or co-treatment with TGFbeta inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGFbeta signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGFbeta signaling pathway in breast cancer cells.
...
PMID:Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: proteomic characterization. 1709 29


<< Previous 1 2 3 4 5 6 7 8 9 10