Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Pivot Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Target Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Query: EC:5.5.1.1 (
muconate lactonizing enzyme
)
85
document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)
Trichosporon cutaneum was grown with phenol or resorcinol as the carbon source. The formation of beta-ketoadipate from phenol, catechol, and resorcinol was shown by a manometric method using antipyrine and also by its isolation and crystallization. Metabolism of phenol begins with o-hydroxylation. This is followed by ortho-ring fission, lactonization to muconolactone, and delactonization to beta-ketoadipate. No meta-ring fission could be demonstrated. Metabolism of resorcinol begins with o-hydroxylation to 1,2,4-benzenetriol, which undergoes ortho-ring fission yielding maleylacetate. Isolating this product leads to its decarboxylation and isomerization to trans-acetylacrylic acid. Maleylacetate is reduced by crude extracts to beta-ketoadipate with either reduced nicotinamide adenine dinucleotide or reduced nicotinamide adenine dinucleotide phosphate as a cosubstrate. The enzyme catalyzing this reaction was separated from catechol 1,2-oxygenase, phenol hydroxylase, and
muconate lactonizing enzyme
on a diethyl-aminoethyl-Sephadex A50 column. As a result it was purified some 50-fold, as was the muconate-lactonizing enzyme. Methyl-, fluoro-, and chlorophenols are converted to a varying extent by crude extracts and by purified enzymes. None of these derivatives is converted to maleylacetate, beta-ketoadipate, or their derivatives. Cells grown on resorcinol contain enzymes that participate in the degradation of phenol and vice versa.
...
PMID:Metabolism of phenol and resorcinol in Trichosporon cutaneum. 3 45
Pseudomonas sp. WR912 was isolated by continuous enrichment in three steps with 3-chloro-, 4-chloro-, and finally 3,5-dichlorobenzoate as sole source of carbon and energy. The doubling times of the pure culture with these growth substrates were 2.6, 3.3, and 5.2 h, respectively. Stoichiometric amounts of chloride were eliminated during growth. Oxygen uptake rates with chlorinated benzoates revealed low stereospecificity of the initial benzoate 1,2-dioxygenation. Dihydrodi-hydroxybenzoate dehydrogenase, catechol 1,2-dixoygenase, and
muconate cycloisomerase
activities were found in cell-free extracts. The ortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catabolic pathway for chlorocatechols was proposed on the basis of similarity to chlorophenoxyacetate catabolism, and cometabolism of 3,5-dimethylbenzoate by chlorobenzoate-induced cells yielded 2,5-dihydro-2,4-dimethyl-5-oxo-furan-2-acetic acid.
...
PMID:Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. 45 23
The gene (pcaB) for 3-carboxymuconate lactonizing enzyme (CMLE; 3-carboxymuconate cycloisomerase; EC 5.5.1.2) from Pseudomonas putida has been cloned into pMG27NS, a temperature-sensitive expression vector, and expressed in Escherichia coli N4830. The specific activity and kinetic parameters of the recombinant CMLE were comparable to those previously reported. A comparison of the deduced amino acid sequence of CMLE with sequences available in the PIR and Genbank databases revealed that CMLE has highly significant sequence homology to the class II fumarase family, particularly to adenylosuccinate lyase from Bacillus subtilis. CMLE has no significant homology to
muconate lactonizing enzyme
(MLE) from P. putida, its sister enzyme in the beta-ketoadipate pathway. These findings fully corroborate a prediction made by us on the basis of mechanistic and stereochemical analyses of CMLE and MLE [Chari, R. V. J., Whitman, C. P., Kozarich, J. W., Ngai, K.-L., & Ornston, L. N. (1987) J. Am. Chem. Soc. 109, 5514-5519] and suggest that CMLE and MLE were recruited into this specialized pathway from two different enzyme families.
...
PMID:3-Carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family: a new reaction in the evolution of a mechanistic motif. 139 Jul 52
The crystal structure of mandelate racemase (MR) has been solved at 3.0-A resolution by multiple isomorphous replacement and subsequently refined against X-ray diffraction data to 2.5-A resolution by use of both molecular dynamics refinement (XPLOR) and restrained least-squares refinement (PROLSQ). The current crystallographic R-factor for this structure is 18.3%. MR is composed of two major structural domains and a third, smaller, C-terminal domain. The N-terminal domain has an alpha + beta topology consisting of a three-stranded antiparallel beta-sheet followed by an antiparallel four alpha-helix bundle. The central domain is a singly wound parallel alpha/beta-barrel composed of eight central strands of beta-sheet and seven alpha-helices. The C-terminal domain consists of an irregular L-shaped loop with several short sections of antiparallel beta-sheet and two short alpha-helices. This C-terminal domain partially covers the junction between the major domains and occupies a region of the central domain that is filled by an eight alpha-helix in all other known parallel alpha/beta-barrels except for the barrel domain in
muconate lactonizing enzyme
(MLE) [Goldman, A., Ollis, D. L., & Steitz, T. A. (1987) J. Mol. Biol. 194, 143] whose overall polypeptide fold and amino acid sequence are strikingly similar to those of MR [Neidhart, D. J., Kenyon, G. L., Gerlt, J. A., & Petsko, G. A. (1990) Nature 347, 692]. In addition, the crystal structure reveals that, like MLE, MR is tightly packed as an octamer of identical subunits. The active site of MR is located between the two major domains, at the C-terminal ends of the beta-strands in the alpha/beta-barrel domain. The catalytically essential divalent metal ion is ligated by three side-chain carboxyl groups contributed by residues of the central beta-sheet. A model of a productive substrate complex of MR has been constructed on the basis of difference Fourier analysis at 3.5-A resolution of a complex between MR and (R,S)-p-iodomandelate, permitting identification of residues that may participate in substrate binding and catalysis. The ionizable groups of both Lys 166 and His 297 are positioned to interact with the chiral center of substrate, suggesting that both of these residues may function as acid/base catalysts.(ABSTRACT TRUNCATED AT 400 WORDS)
...
PMID:Mechanism of the reaction catalyzed by mandelate racemase. 2. Crystal structure of mandelate racemase at 2.5-A resolution: identification of the active site and possible catalytic residues. 189 34
Mandelate racemase (MR) is the first enzyme in the bacterial pathway that converts mandelic acid to benzoic acid. The mandelate pathway can utilize either enantiomer of mandelate because this enzyme interconverts them. We have solved the structure of MR at 2.5 A resolution. The enzyme is almost identical in conformation to another bacterial enzyme,
muconate lactonizing enzyme
(MLE). Both enzymes are TIM-barrel proteins. This result has profound implications for the evolution of enzymic function and the origin of metabolic pathways. It also implies that it should be possible to transform one enzyme into the other by site-directed mutagenesis.
...
PMID:Restructuring catalysis in the mandelate pathway. 209 37
Mandelate racemase (MR) and
muconate lactonizing enzyme
(MLE) catalyse separate and mechanistically distinct reactions necessary for the catabolism of aromatic acids by Pseudomonas putida. The X-ray crystal structure of MR, solved at 2.5 A resolution, reveals that the secondary, tertiary and quaternary structures of MR and MLE are remarkably similar; also, MR and MLE are about 26% identical in primary structure. However, MR has no detectable MLE activity and vice versa. Thus, MR and MLE constitute the first example of enzymes that catalyse different reactions, as opposed to mechanistically identical reactions on different substrates, yet possess sufficient structural and sequence identity that they are likely to have evolved from a common ancestor. The discovery that MR and MLE catalyse different reactions but share a common structural framework has broad implications for the natural evolution of enzymes and metabolic pathways, as well as for the rational modification of enzyme activities.
...
PMID:Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. 221 99
Enzymatic conversion of 4-fluorocatechol in the simultaneous presence of partially purified preparations of catechol 1,2-dioxygenase from Pseudomonas cepacia and
muconate cycloisomerase
from Alcaligenes eutrophus 335 yielded a product that was unambiguously identified as (+)-4-fluoromuconolactone [(+)-4-carboxymethyl-4-fluoro-but-2-en-4-olide]. This compound was shown to be the only major product formed from 3-fluoro-cis,cis-muconate by the action of muconate cycloisomerases from A. eutrophus 335, A. eutrophus JMP134, and P. cepacia as well as by the action of dichloromuconate cycloisomerase from A. eutrophus JMP134. This finding implies that dichloromuconate cycloisomerase, like the muconate cycloisomerases, catalyzes primarily a cycloisomerization reaction, which only in the case of chloro- and bromo-substituted substrates is connected to a dehalogenation. 4-Fluoromuconolactone at pH 7 decomposes by spontaneous reactions mainly to maleylacetate, which then decarboxylates to give cis-acetylacrylate. Although significant amounts of an unidentified compound are also formed from the fluorolactone, HF elimination to the two isomeric dienelactones (4-carboxymethylenebut-2-en-4-olides) is negligible. However, all spontaneous reactions proceed so slowly that an enzymatic conversion of 4-fluoromuconolactone must be assumed. Participation of dienelactone hydrolases in this reaction is indicated by their induction during growth of various strains with 4-fluorobenzoate. However, experiments with cell extracts of P. putida A3.12 suggest that at least one other hydrolytic enzyme is able to contribute to 4-fluoromuconolactone conversion. In light of these observations, earlier proposals for a 4-fluorobenzoate degradative pathway are discussed.
...
PMID:Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. 239 80
The catB and catC genes encode cis,cis-
muconate lactonizing enzyme
I (
EC 5.5.1.1
) and muconolactone isomerase (EC 5.3.3.4), respectively. These enzymes are required for the dissimilation of benzoate to beta-ketoadipate by Pseudomonas putida and are under coordinate transcriptional regulation. By deletion analysis and the use of pKT240 as a promoter probe vector, we located a single promoter region for the catBC operon upstream of catB. RNA-DNA hybridization studies, together with reverse transcriptase mapping, demonstrated that this promoter must be activated in the presence of an inducer molecule for effective transcription of the operon. In addition, the transcription initiation site was located 64 base pairs upstream of the catB initiation codon, and sequences upstream of -43 were required for promoter function. The catBC promoter was compared with other positively regulated procaryotic promoters to identify possible consensus sequences.
...
PMID:Transcriptional regulation, nucleotide sequence, and localization of the promoter of the catBC operon in Pseudomonas putida. 244 20
Pseudomonas putida utilizes the catBC operon, which encodes cis,cis-
muconate lactonizing enzyme
I (MLEI;
EC 5.5.1.1
) and muconolactone isomerase (MI; EC 5.3.3.4), for growth on benzoate as a sole carbon source. This operon is positively regulated, and the promoter is located 64 bp upstream of the catB translational start site. Using site-specific mutagenesis, we identified nucleotides that influenced the induction of this promoter. Promoter activity was monitored with the promoter probe vector pKT240. Transcription of mRNA from mutant promoters was determined by primer extension mapping. Comparison of the initiation start site of mutant promoters with that of the wild-type promoter identified a single functional promoter.
...
PMID:Identification of nucleotides critical for activity of the Pseudomonas putida catBC promoter. 277 16
Two structural genes needed for catechol degradation, catA and catB, encode the respective enzymes catechol 1,2-dioxygenase (EC 1.13.11.1) and
muconate cycloisomerase
(
EC 5.5.1.1
). Catechol is an intermediate in benzoate degradation, and the catA and catB genes are clustered within a 17-kilobase-pair (kbp) region of Acinetobacter calcoaceticus chromosomal DNA containing all of the structural genes required for the conversion of benzoate to tricarboxylic acid cycle intermediates. catA and catB were transcribed in the same direction and were separated by 3.8 kbp of DNA. The 3.8-kbp sequence revealed that directly downstream from catA and potentially transcribed in the same direction were two open reading frames encoding polypeptides of 48 and 36 kilodaltons (kDa). Genetic disruption of these open reading frames did not discernably alter either catechol metabolism or its regulation. A third open reading frame, beginning 123 bp upstream from catB and transcribed divergently from this gene, was designated catM. This gene was found to encode a 28-kDa trans-acting repressor protein that, in the absence of cis,cis-muconate, prevented expression of the cat structural genes. Constitutive expression of the genes was caused by a mutation substituting Arg-156 with His-156 in the catM-encoded repressor. The repressor protein proved to be a member of a diverse family of procaryotic regulatory proteins which, with rare exception, are transcriptional activators. Repression mediated by catM was not the sole transcriptional control exercised over catA in A. calcoaceticus. Expression of catA was elicited by either benzoate or cis,cis-muconate in a genetic background from which catM had been deleted. This induction required DNA in a segment lying 1 kbp upstream from the catA gene. It is likely that an additional gene, lying outside the region containing the structural genes necessary for benzoate metabolism, contributes to this control.
...
PMID:Characterization of Acinetobacter calcoaceticus catM, a repressor gene homologous in sequence to transcriptional activator genes. 279 26
1
2
3
4
5
6
7
8
9
Next >>