Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Pivot Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Target Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Query: EC:4.2.3.17 (
taxadiene synthase
)
58
document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)
Taxadiene, the key intermediate of paclitaxel (Taxol) biosynthesis, has been prepared enzymatically from isopentenyl diphosphate in cell-free extracts of Escherichia coli by overexpressing genes encoding isopentenyl diphosphate isomerase, geranylgeranyl diphosphate synthase and
taxadiene synthase
. In addition, by the expression of three genes encoding four enzymes on the terpene biosynthetic pathway in a single strain of E. coli, taxadiene can be conveniently synthesized in vivo, at the unoptimized yield of 1.3mg per liter of cell culture. The success of both in vitro and in vivo synthesis of taxadiene bodes well for the future production of taxoids by non-paclitaxel producing organisms through pathway engineering.
...
PMID:Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. 1155 61
Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme
taxadiene synthase
(which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.
...
PMID:Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. 1544 46
Paclitaxel (Taxol) is a widely used anticancer isoprenoid produced by the secondary metabolism of yew (Taxus sp.) trees. However, only limited amounts of Taxol or related metabolites (taxoids) can be obtained from the currently available sources. In this work we have taken the first step toward genetically engineering the biosynthesis of taxoids in angiosperms. The first committed step in Taxol biosynthesis is the production of taxadiene from geranylgeranyl diphosphate (GGPP), catalyzed by the plastid-localized enzyme
taxadiene synthase
(
TXS
). A recombinant T. baccata
TXS
lacking the putative plastid targeting peptide and fused to a C-terminal histidine (His) tag was shown to be enzymatically active in Escherichia coli. Constitutive production of the full-length His-tagged enzyme in Arabidopsis thaliana plants led to the accumulation of taxadiene and concomitant growth retardation and decreased levels of photosynthetic pigment in transgenic plants. Although these phenotypes may derive from a toxic effect of taxadiene, the lower accumulation of endogenous plastid isoprenoid products such as carotenoids and chlorophylls in transgenic plants also suggests that the constitutive production of an active
TXS
enzyme might alter the balance of the GGPP pool. Induction of transgene expression using a glucocorticoid-mediated system consistently resulted in a more efficient recruitment of GGPP for the production of taxadiene, which reached levels 30-fold higher than those in plants constitutively expressing the transgene. This accomplishment illustrates the possibility of engineering the production of taxoids and other GGPP-derived isoprenoids in crop plants despite the constraints associated with limited knowledge with regard to regulation of GGPP availability.
...
PMID:Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. 1544 91
The mechanism of the
taxadiene synthase
-catalyzed cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP, 7) to taxadiene (5) is proposed to proceed through a verticillen-12-yl carbocation intermediate (8) that undergoes an 11 --> 7 proton transfer leading to formation of the C ring. The substrate analogue 6-fluoroGGPP (17) was synthesized to elucidate the stereochemistry of the putative verticillenyl intermediate. It was expected that the inductive electron-withdrawing effect of the fluoro substituent would prevent the critical proton transfer to the Delta(7) double bond and thereby derail the cyclization at the bicyclic stage. Incubation of the fluoro analogue with recombinant
taxadiene synthase
yielded a mixture of three major and two minor fluoro diterpenes according to GC/MS analyses. The three major products were identified as the exocyclic, endocyclic, and 4(20)-methylene 7-fluoroverticillenes, i.e., Delta(3,7,12 (18)), Delta(3,7,12), and Delta(4(20),7,11) isomers (22, 23, and 24) on the basis of (1)H NMR analyses and comparisons with the parent bicyclic diterpenes. The H1beta, H11alpha (1S,11R) configurations at the bridgehead positions of 22 were established by means of NOE experiments and CD spectra. The absolute configuration of (+)-verticillol (4) was revised after the anomalous dispersion X-ray analysis of (+)-verticillol p-iodobenzoate. Of particular note, all absolute configurations of verticillane diterpenes in the literature should be reversed. This work affords compelling evidence supporting the H11alpha (11R) stereochemistry of the verticillen-12-yl(+) ion intermediate in the
taxadiene synthase
-catalyzed reaction and illustrates the capability of vinyl fluoro analogues to intercept complex cyclization cascades.
...
PMID:Taxadiene synthase-catalyzed cyclization of 6-fluorogeranylgeranyl diphosphate to 7-fluoroverticillenes. 1591 73
Taxus cuspidata P991 in plant cell suspension culture is capable of producing the important anticancer agent Taxol (paclitaxel) and related taxanes. High-level production is obtained by elicitation with methyl jasmonate, but successful elicitation leads to loss of cell viability that cannot be recovered by subculture. Here, we test whether the loss of viability is due to a direct effect of methyl jasmonate. Upon subculture, the reduced viability continued in methyl jasmonate elicited cultures, but not in nonelicited control cultures. The growth reduction in elicited T. cuspidata P991 suspension cultures was evaluated by viability reduction measurements using phenosafranin and fluorescein diacetate. The viability reduction does not appear to be related to apoptosis based on DNA laddering analysis because it occurred very late (at day 35) in the culture period. DNA laddering was also found only after day 28 in T. canadensis C93AD (a Taxol-producing cell line) elicited with methyl jasmonate, implying that apoptosis is not the major death mechanism after elicitation. As compared to Taxol-producing cell lines, the viability of a nonproducing cell line, T. canadensis CO93D, was not severely affected by methyl jasmonate, indicating that methyl jasmonate itself is not the primary factor for viability reduction. Based on Northern analysis of
taxadiene synthase
mRNA from both elicited and nonelicited T. cuspidata P991, methyl jasmonate directly induces the production of this enzyme, which is the first committed step in the biosynthetic pathway for Taxol. As a result, both viability reduction and growth reduction appear related to a high production level of Taxol (and related taxanes) upon methyl jasmonate elicitation, rather than to the direct effect of methyl jasmonate.
...
PMID:Relationship of viability and apoptosis to taxol production in Taxus sp. suspension cultures elicited with methyl jasmonate. 1593 45
Taxadiene synthase catalyzes the cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP) to taxa-4(5),11(12)-diene (Scheme 1, 5 --> 2) as the first committed step of Taxol biosynthesis. Deuterated GGPPs labeled stereospecifically at C-1, C-4, and C-16 were synthesized and incubated with recombinant
taxadiene synthase
from Taxus brevifolia to elucidate the stereochemistry of the cyclization reaction at these positions. The deuterium-labeled taxadienes obtained from (R)-[1-(2H1)]-, (S)-[1-(2H1)]-, and [16,16,16-(2H3)]GGPPs (9, 10, and 23b) were established to have deuterium in the 2alpha and 2beta CH2 and 16CH3 positions, respectively, by high-field 1H NMR spectroscopy (eqs 1-3). Incubation of (R)-[4-(2H1)]GGPP (17) with the recombinant enzyme gave a 10:10:80 mixture of [5beta-(2H1)]taxa-3(4),11(12)-diene, [5beta-(2H1)]taxa-4(20),11(12)-diene, and unlabeled taxa-4(5),11(12)-diene according to GC/MS analyses of the products (eq 4). It follows that C-1 of GGPP underwent inversion of configuration, that the A ring cyclization occurs on the si face of C15, and that the terminating proton abstraction removes H5beta from the final taxenyl carbocation intermediate. Thus, the C1-C14 and C15-C10 bonds are formed on the opposite faces of the 14,15 double bond of the substrate, i.e., overall anti electrophilic addition. The implications of these findings for the mechanism of the cyclization and rearrangement are discussed.
...
PMID:Stereochemistry of the macrocyclization and elimination steps in taxadiene biosynthesis through deuterium labeling. 1593 3
This chapter proposes the concept of rational manipulation of secondary metabolite heterogeneity in plant cell cultures. The heterogeneity of plant secondary metabolites is a very interesting and important issue because these structure-similar natural products have different biological activities. Both taxoids and ginsenosides are two kinds of preeminent examples in the enormous reservoir of pharmacologically valuable heterogeneous molecules in the plant kingdom. They are derived from the five-carbon precursor isopentenyl diphosphate, produced via the mevalonate or the non-mevalonate pathway. The diterpenoid backbone of taxoids is synthesized by
taxadiene synthase
and the triterpenoid backbone of ginsenosides is synthesized by dammarenediol synthase or beta-amyrin synthase. After various chemical decorations (oxidation, substitution, acylation, glycosylation, benzoylation, and so on) mediated by P450-dependent monooxygenases, glycosyltransferases, acyltransferases, benzoyltransferases, and other enzymes, the terpenoid backbones are converted into heterogeneous taxoids and ginsenosides with different bioactivities. Although detailed information about accumulation and regulation of individual taxoids or ginsenosides in plant cells is still lacking, remarkable progress has recently been made in the structure and bioactivity identification, biosynthetic pathway, manipulation of their heterogeneity by various methodologies including environmental factors, biotransformation, and metabolic engineering in cell/tissue cultures or in plants. Perspectives on a more rational and efficient process to manipulate production of desired plant secondary metabolites by means of metabolic engineering and "omics"-based approaches (e.g., functional genomics) are also discussed.
...
PMID:Plant cells: secondary metabolite heterogeneity and its manipulation. 1627 Jun 56
[reaction: see text] The cyclization of GGPP to taxadiene, catalyzed by
taxadiene synthase
, has been suggested to proceed through a series of monocyclic isocembrenyl- and bicyclic verticillyl-carbocationic intermediary stages. A set of GGPP analogues with abolished or perturbed pi-nucleophilicity at the delta10 double bond (GGPP numbering) was synthesized and incubated with
taxadiene synthase
to intercept the cyclization cascade at the monocyclic stage. Each analogue was transformed by
taxadiene synthase
in vitro to hydrocarbon products in varying yields, and the structures of the major product in each reaction were solved by GCEIMS and one- and two-dimensional (1H and 13C) NMR and found to be 14-membered monocyclic isocembrenyl diterpenes, indicating that the first C-C bond formation catalyzed by
taxadiene synthase
could be uncoupled from the other subsequent bond formation events by using suitably designed substrate analogues. The formation and isolation of these isocembrenyl diterpene products using
taxadiene synthase
supports proposals that the isocembrenyl cation is an intermediate in the cyclization of GGPP to taxadiene.
...
PMID:Studies on taxadiene synthase: interception of the cyclization cascade at the isocembrene stage with GGPP analogues. 1629 33
A full-length cDNA encoding
taxadiene synthase
(designated as TmTXS), which catalyzes the first committed step in the Taxol biosynthetic pathway, was isolated from young leaves of Taxus media by rapid amplification of cDNA ends (RACE). The full-length cDNA of TmTXS had a 2586 bp open reading frame (ORF) encoding a protein of 862 amino acid residues. The deduced protein had isoelectric point (pI) of 5.32 and a calculated molecular weight of about 98 kDa, similar to previously cloned diterpene cyclases from other Taxus species such as T. brevifolia and T. chinenisis. Sequence comparison analysis showed that TmTXS had high similarity with other members of terpene synthase family of plant origin. Tissue expression pattern analysis revealed that TmTXS expressed strongly in leaves, weak in stems and no expression could be detected in fruits. This is the first report on the mRNA expression profile of genes encoding key enzymes involved in Taxol biosynthetic pathway in different tissues of Taxus plants. Phylogenetic tree analysis showed that TmTXS had closest relationship with
taxadiene synthase
from T. baccata followed by those from T. chinenisis and T. brevifolia. Expression profiles revealed by RT-PCR under different chemical elicitor treatments such as methyl jasmonate (MJ), silver nitrate (SN) and ammonium ceric sulphate (ACS) were also compared for the first time, and the results revealed that expression of TmTXS was all induced by the tested three treatments and the induction effect by MJ was the strongest, implying that TmTXS was high elicitor responsive.
...
PMID:Characterization and expression profile analysis of a new cDNA encoding taxadiene synthase from Taxus media. 1633 81
The taxanes are a group of polycyclic diterpenes produced by various species of yew. The potent anticancer drug paclitaxel (marketed as Taxol) is the commercially most important taxane with annual sales in 2000 exceeding 1.6 billion dollars. Paclitaxel is currently obtained either by direct extraction from yew trees or by the extraction of the precursor 10-deactilbaccatin III, which is then converted to paclitaxel by semi-synthesis. Apart from cost, one of the main draw backs to taxol in cancer treatment is the development of resistance by tumours, commonly due to the expression of ABC transporter efflux pumps which remove the drug from the target cell. A number of natural taxanes and semisynthetic derivates, have recently been shown to act as potent inhibitors of ABC transport proteins. These compounds have no effect upon microtubule polymerization (the normal target of paclitaxel), but have the ability to restore drug sensitivity when given in combination with paclitaxel to resistant cell lines. In work to be described elsewhere, we sort to carry out a structure function analysis of the ability of novel oxidised taxanes to act as ABC transporter inhibitors. For this study 100 mg or more of taxadiene [taxa-4(5),11(12)-diene], the first taxane in the paclitaxel pathway, was required as starting material from which to synthesize these compounds. Taxadiene is synthesised directly from geranylgeranyl diphosphate (GGPP), which is found in most plant tissues where it serves as a common precursor for many metabolites. The synthesis and use of GGDP are tightly regulated in most vegetative organs, however, in tomato fruit it is used almost exclusively for the production of coloured carotenoids which accumulate to high levels in the plastid as lycopene crystals. Expressing
taxadiene synthase
in a yellow-fruited tomato line that lacks the ability to utilise GGPP for carotenoid synthesis allowed GGPP normally utilised for making carotenoids to be re-routed for the production of taxadiene, allowing the facile extraction of 160 mg of highly pure taxadiene from 1 kg of freeze dried fruit.
...
PMID:Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit. 1710 66
<< Previous
1
2
3
4
5
6
Next >>