Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: CAS:1071-83-6 (Glyphosate)
1,313 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

The present work evaluated the possible protective effects of quercetin against glyphosate-induced hepatotoxicity in adult rats. Rats were randomly divided into three groups: a control group (C), a glyphosate-treated group (Gly) and a group treated with both glyphosate and quercetin (Gly+QE). During the experimental period (15 days), glyphosate (50 mg/kg b.w.) was administered every two days by intraperitoneal way while quercetin (20 mg/kg b.w./day) was administered daily by gavage. Glyphosate-induced hepatic oxidative stress was evidenced by the increased levels of malondialdehyde, hydrogen peroxide, advanced oxidation protein products and protein carbonyls with a significant decrease in enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (non-protein thiols, glutathione, vitamin C) antioxidants. Plasma biomarkers of hepatotoxicity (AST, ALT, ALP, γ-GT, albumin) were also altered. Moreover, glyphosate induced DNA damage, up-regulated metallothionein (MT I and MT II) genes expression and provoked histopathological changes in rats' liver. Quercetin supplementation to glyphosate-treated rats markedly ameliorated all the parameters indicated above as well as the liver histoarchitecture. Therefore, quercetin might have beneficial effects against glyphosate-induced hepatotoxicity in rats.
...
PMID:Glyphosate disrupts redox status and up-regulates metallothionein I and II genes expression in the liver of adult rats. Alleviation by quercetin. 3082 Dec 49

Glyphosate (GLY)-based herbicide, one of the most widely used herbicides, might cause a series of environmental problems and pose a toxicological risk to aquatic organisms. However, data on the potential hazard and toxicity mechanism of GLY to fish gills are relatively scarce. In this study, a subacute toxicity test of common carp (Cyprinus carpio L.) treated with commercial GLY at 52.08 and 104.15 mg L-1 for 7 d was conducted. The results revealed that GLY exposure significantly inhibited Na+/K+-ATPase and increased AST and ALT activities in the fish gills. The biochemical assays results revealed that GLY treatment remarkably altered the transcriptional levels of HSP70 and HSP90; inhibited the activities of SOD, CAT, GPx, GR, and T-AOC; reduced the contents of GSH, but remarkably promoted MDA and PC contents, suggesting that GLY exposure induced oxidative stress and lipids and proteins damage in the carp gills. Further research revealed that GLY exposure also promoted expression of NF-κB, iNOS, IL-1β, IL-6, IL-8, and TNF-α; altered the levels of IL-10 and TGF-β, indicating that GLY exposure induced inflammatory response in the fish gills. Additionally, we found that GLY exposure activated apaf-1 and bax and inhibited bcl-2, induced caspase-9 and caspase-3 expression and caused remarkable histological damage in the fish gills. These results may further enriches the toxicity mechanistic theory of GLY to fish gills, which may be useful for the risk assessment of GLY and aquatic organism protection.
...
PMID:Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp. 3125 26

The present study was undertaken to evaluate the protective effects of Linum usitatissimum oil (LuO) against sub-chronic Roundup (RDP)-induced toxicity and oxidative stress in rats. Rats were divided into four groups: control group (no treatment), RDP group (Roundup at 269.9 mg/kg b.w.), LuO group (0.5 g/kg b.w. of LuO) and RDP+LuO group (RDP and LuO simultaneously). LuO decreased the ferric reducing antioxidant power (FRAP) (IC50=10.36 μg/ml) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50=22.85 mg/ml) in the tested tissues. The 30-day exposure of rats to RDP caused an increase in serum hepatic and renal markers: AST, ALT, ALP, LDH, γGT, bilirubin, urea, and creatinine. In addition, SOD, CAT and GST activities decreased by 43%, 61%, and 61%, respectively, while GPx activity, MDA and PCOs levels increased by 80%, 46%, 25%, respectively. LuO treatment alleviated hepatotoxicity in RDP-treated rats, showing improved levels of oxidative stress biomarkers and plasma biochemical parameters. The histological examination of the liver and kidney confirmed the changes in Roundup-treated rats and demonstrated the protective role of LuO.
...
PMID:Roundup-induced biochemical and histopathological changes in the liver and kidney of rats: the ameliorative effects of Linum usitatissimum oil. 3218 90

Glyphosate (Gly) is an active ingredient of herbicide, its underlying toxicity on fish is still unclear. The aim of this study was to evaluate chronic toxicity of Gly on tilapia via determining antioxidative status, metabolism, inflammation and immune response. The fish were exposed to different concentrations of Gly (0, 0.2, 0.8, 4 and 16 mg/L) for 80 days. The blood, liver, gills and spleen were collected to assay biochemical parameters and genes expression after 80 days of exposure. The results showed that treatments with higher Gly (4 and/16 mg/L) significantly increased the levels of TC, TG, AST, ALT, LDL-C and MDA, and apparently decreased the levels of SOD, GSH, CAT, HDL-C, HK, G3PDH, FBPase and G6PD in serum, liver and/or gills. The gene expression data showed that the treatments with Gly adversely affected Nrf2 pathway in liver, gills and spleen, as shown by significant changes of nrf2, keap1, ho-1, nqo1 and gsta mRNA levels. Meanwhile, inflammatory response was activated via enhancing the mRNA levels of nf-κb2, rel, rela tnf-α, and il-1β, and immunotoxicity was caused through downregulating the genes expression of c-lzm, hep, igm, hsp70 and c3 in liver, gills and/or spleen of tilapia after Gly exposure. Moreover, the mRNA levels of cyp1a and cyp3a were upregulated in 16 or 0.2 mg/kg Gly group in liver. Overall results suggested chronic Gly exposure reduced antioxidative ability, disturbed liver metabolism, promoted inflammation and suppressed immunity. Interestingly, the Nrf2 and NF-κB signaling pathways played key roles in Gly chronic toxicity.
...
PMID:Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (GIFT, Oreochromis niloticus). 3286 95


<< Previous 1 2