Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: CAS:77-10-1 (Phencyclidine)
442 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

Phencyclidine (PCP), a non-competitive antagonist of the NMDA subtype of glutamate receptor, which also acts as an indirect dopamine agonist and at sigma sites, can induce a long lasting psychotic state when taken acutely. It is well established that PCP is toxic to specific limbic structures and we have recently demonstrated that it induces apoptosis of a subpopulation of striatal neurons. These neurons lie predominantly in the dorsomedial striatum and project to the globus pallidus. The mechanisms mediating this neuronal death are unclear though manipulations of dopamine transmission can induce striatal c-fos expression and continuous c-fos expression has been implicated in the molecular cascades controlling apoptosis. We accordingly undertook a series of experiments to determine the action of PCP on striatal Fos-like immunoreactivity (FLI). PCP (80 mg/kg, s.c.) elicited FLI in three distinct striatal areas, namely dorsomedial, dorsolateral and the nucleus accumbens. The level of PCP-induced FLI was consistently attenuated by the co-administration of the D-1 antagonist, SCH 23390. Vehicle injections also induced modest levels of FLI in the dorsomedial striatum and the nucleus accumbens which again were attenuated by SCH 23390. The type of striatal neuron in which PCP-induced FLI was determined by the use of a retrograde anatomical tracer. A colloidal gold tracer was thus injected into the major areas of termination of striatal projection neurons prior to the administration of PCP. This procedure demonstrated that the majority of the FLI positive striatal cells were striatopallidal neurons, though some FLI positive striatoentopeduncular neurons were also seen. The potential pharmacological mechanisms underlying the results are discussed. It is argued that the complex pattern of PCP-induced striatal FLI might be accounted for by a differential action upon extracellular dopamine levels whereby they are elevated in some striatal areas and simultaneously reduced in others.
...
PMID:Phencyclidine induces D-1 dopamine receptor mediated Fos-like immunoreactivity in discretely localised populations of striatopallidal and striatoentopeduncular neurons in the rat. 1006 2

Phencyclidine (PCP), a non-competitive NMDA antagonist with actions at multiple other central nervous system receptors, can cause both acute and lasting psychoses in humans, and has also been used in cross-species models of psychosis. Acute exposure to PCP in rats produces behavioral changes, including a loss of prepulse inhibition (PPI) of the startle reflex, which parallels the loss of PPI observed in schizophrenia patients. Sustained exposure to PCP in rats produces neuropathological changes in several limbic regions and prolonged behavioral abnormalities that may parallel neuropsychological deficits in schizophrenia. It is unclear whether sustained PCP exposure will also produce a loss of prepulse inhibition which parallels the decrease observed in schizophrenia patients. In the present study, we examined changes in PPI during and after sustained PCP administration, using 5-day PCP exposure via subcutaneous osmotic minipumps, or 14-day PCP exposure via repeated intraperitoneal injections. In both forms of drug delivery, PPI was disrupted during, but not after, sustained drug exposure. PPI does not appear to be sensitive to neuropathological effects of sustained PCP exposure.
...
PMID:Effects of sustained phencyclidine exposure on sensorimotor gating of startle in rats. 1037 17

Phencyclidine (PCP) and other NMDA receptor antagonists such as ketamine induce psychotic symptoms that are difficult to reverse with current medications and which closely resemble those of schizophrenia. This study investigated the behavioral effects of continuous PCP administration in six socially-housed Cebus apella monkeys. Chronic treatment was associated with a sustained decrease in stereotyped locomotion (pacing) and a sustained increase in scanning behavior. Treatment was also associated with a modest decrease in self- and environment-directed behavior and goal-directed locomotion and an increase in affiliative behavior at lower doses. Four animals had one or more episodes of extreme motoric and physiological responses precipitated by stressful events. The results indicate that behavioral effects of chronic PCP in primates differ from those seen following acute treatments and represent an appropriate model system for new antipsychotic drug development.
...
PMID:Behavioral effects of chronic phencyclidine in monkeys. 1051 41

Phencyclidine (PCP) and other N-methyl-D-aspartate (NMDA) antagonists induce schizophrenia-like symptoms in humans. In rodents, PCP induces a syndrome of stereotypies and hyperactivity that is accompanied by stimulation of striatal dopamine release. Glycine and other NMDA agonists reverse PCP-induced behaviors in rodents and ameliorate PCP psychosis-like symptoms of schizophrenia in clinical trials. Glycine levels in vivo are regulated by the actions of glycine (GLYT1) transporters. The present study investigates effects of glycine and the prototypic glycine transport inhibitor glycyldodecylamide (GDA) on striatal dopamine release in vitro using a mouse striatal assay. Glycine and GDA significantly inhibit NMDA-induced striatal dopamine release, consistent with their ability to enhance local striatal inhibitory neurotransmission in vitro and to reverse PCP-induced hyperactivity in vivo.
...
PMID:Inhibition of striatal dopamine release by glycine and glycyldodecylamide. 1082 63

Phencyclidine (PCP) can induce a model psychosis in humans that mimics the positive and negative symptoms of schizophrenia. The purpose of the present study was to determine whether PCP can induce similar behavioural effects in rats and whether these effects can be alleviated by neuroleptic drug treatment. Rats were tested in the social interaction test, and their behaviour was quantified by an automated video-tracking system and manual scorings of stereotyped behaviour and ataxia. The behavioural effects of different dose- and administration regimes of PCP were initially determined, and it was found that PCP dose-dependently induced stereotyped behaviour and social isolation in the rats. Comparison to clinical studies suggests that these behaviours correspond to certain aspects of the positive and negative symptoms, respectively, of a PCP psychosis in humans. Subsequently, the effects of 3 or 21 days of administration of the antipsychotic drugs haloperidol or clozapine on the behaviour of either vehicle- or PCP-treated rats were determined. Haloperidol did not produce a selective antagonism of PCP, whereas chronic clozapine selectively inhibited the PCP-induced stereotyped behaviour and social isolation. These effects of haloperidol and clozapine suggest that this animal model can determine the effects of neuroleptic drugs on positive and negative symptoms, onset of action, and side-effect profile, including effects on the motor system. Together these data suggest that this may be a possible animal model of the positive and negative symptoms of schizophrenia.
...
PMID:Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. 1122 90

Phencyclidine (PCP) has been described to exacerbate psychotic symptoms in patients suffering from schizophrenia. In rats, PCP, dose-dependently, induces hyperactivity, stereotyped behaviour and social isolation, postulated to represent the positive (hyperactivity, stereotypy) and negative (social isolation) symptoms of schizophrenia. Based on previous studies, ibotenic acid lesions in the amygdala on day 7 of life have been proposed as an animal model of psychiatric neurodevelopmental disorders like schizophrenia. The purpose of the present study was to determine whether the responsiveness to PCP on locomotor activity in animals lesioned in the amygdala on day 7 of life is different from the response to this drug in sham-operated animals. The effect of graded doses of PCP on behaviour was assessed in a small open field. Animals lesioned in the amygdala on day 7 of life appeared to be hyperresponsive to PCP compared to sham-operated animals. The hyperresponsiveness to PCP in rats lesioned in the amygdala on day 7 of life further contributes to the validation of this putative animal model of schizophrenia.
...
PMID:Hyperresponsiveness to phencyclidine in animals lesioned in the amygdala on day 7 of life. Implications for an animal model of schizophrenia. 1288 87

Cognitive deficits are a key feature of schizophrenia. N-Methyl-D-aspartate (NMDA) receptor antagonists and amphetamine are known to induce psychotic behaviors and cognitive deficits in animals and humans, often affecting visuo-spatial abilities. Phencyclidine (PCP), MK-801 and amphetamine (AMPH) have been used in pharmacological animal models of schizophrenia, but none of these models has focused so far on spatial learning after repeated administration of the drugs. The objective of this study was to test whether repeated administration of PCP, AMPH or MK-801 influenced the performance of mice in a non-associative spatial learning test. CD-1 male mice were given i.p. daily injections of either saline, PCP (5.0, 10.0 mg/kg), AMPH (2.5, 5 mg/kg) or MK-801 (0.3, 0.6 mg/kg), for 5 days. On day 6 all mice were tested in an open field containing five different objects. After three sessions of habituation, each animal's reactivity to object displacement and object substitution was assessed. No significant differences among treatment groups were observed in object exploration or locomotion during the habituation phase. Five days of repeated PCP, AMPH or MK-801 administration selectively and differentially impaired the ability of mice to discriminate a spatial change, while leaving intact the ability to react to a non-spatial change. These data suggest that neurobiological adaptations to drug regimens known to induce psychotic behaviors and alterations in locomotor activity or stereotypies can also alter spatial learning, as assessed in this test, thus indicating that these regimens could also mimic some of the cognitive deficits observed in schizophrenia.
...
PMID:Repeated administration of phencyclidine, amphetamine and MK-801 selectively impairs spatial learning in mice: a possible model of psychotomimetic drug-induced cognitive deficits. 1455 21

The information transfer from the superficial layers of the entorhinal cortex (EC) to the hippocampus is regulated in a frequency dependent manner. Phencyclidine and related compounds such as MK-801 produce psychotic symptoms that closely resemble schizophrenia. We studied the effects of systemic administration of MK-801 on the signal transfer from the EC layer III to the hippocampal area CA1. High frequency (above 10 Hz) activation of the bi-synaptic entorhinal input in control animals results in a strong suppression of the field potentials in the stratum lacunosum-moleculare of the area CA1. In contrast, in MK-801 pretreated rats the field response was less reduced. The field potential responses evoked in these two groups of animals by high-frequency activation of the monosynaptic input were similar suggesting selective alterations in layer III of the medial EC. We suggest, that MK-801 causes disinhibition of layer III projection cells and, therefore, may cause strong, pathological activation of direct layer III-CA1 pathway.
...
PMID:Effects of phencyclidines on signal transfer from the entorhinal cortex to the hippocampus in rats. 1470 Jul 27

Phencyclidine (PCP) produces schizophrenia-like psychosis and acute PCP-intoxications; however, whether glutamate/NMDA-receptor blockade by PCP modulates or not these mechanisms has remained to be clarified. To clarify this mechanism, we determined interaction among voltage-gated Na(+)-channel inhibitor, tetrodotoxin (TTX), Golgi-disturbing-agent, brefeldin-A (BFA), and PCP on releases of glutamate, GABA, and monoamine in prefrontal-cortex (pFC), using microdialysis. PCP increased basal monoamine release, whereas it decreased basal GABA release, without affecting glutamate release. PCP increased K(+)-evoked monoamine release, whereas it decreased K(+)-evoked glutamate and GABA releases. TTX reduced basal monoamine and GABA releases without affecting glutamate release, whereas BFA did not affect them. Interestingly, BFA and TTX inhibited PCP-associated basal monoamine release and abolished PCP-induced reduction of basal GABA release without affecting glutamate release. BFA and TTX reduced K(+)-evoked releases of all neurotransmitters. BFA inhibited PCP-associated K(+)-evoked monoamine release, but TTX did not affect them. PCP-induced reduction of K(+)-evoked GABA and glutamate releases was abolished by TTX and BFA. These results indicate that PCP reduces GABAergic transmission via NMDA-receptor blockade and activates intracellular endoplasmic-reticulum-associated signal-transduction, resulting in enhancement of monoaminergic transmission in pFC. Thus, these PCP properties support the hypothesis that mechanisms of the neurological symptoms of acute PCP-intoxication, convulsion, and rhabdomyolysis may be involved in both reduction of GABAergic-transmission and activation of endoplasmic-reticulum-associated signal-transduction induced by PCP.
...
PMID:Hyperactivity of endoplasmic reticulum associated exocytosis mechanism contributes to acute phencyclidine intoxication. 1521 46

Phencyclidine has attracted the attention of neuroscientists for many years because of its ability to produce, in humans, a range of symptoms remarkably similar to those of patients suffering from schizophrenia. The main action of phencyclidine is as a non-competitive antagonist of the NMDA class of glutamate receptor. In the past few years, dramatic advances have been made in our understanding of the neuroanatomical and pathological basis of schizophrenia. In turn, these have allowed assessment of the ability of phencyclidine to produce equivalent changes in the rodent CNS. It has now become clear that chronic intermittent low doses of phencyclidine produce a pattern of metabolic and neurochemical changes in the rodent brain that mirror those observed in the brains of schizophrenic patients with impressive precision. This should be of enormous benefit in the search for new anti-psychotic drugs with improved efficacy against the full range of schizophrenic symptoms.
...
PMID:PCP: from pharmacology to modelling schizophrenia. 1566 33


<< Previous 1 2 3 4 5 6 Next >>