Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Pivot Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Target Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Query: CAS:7440-70-2 (
calcium
)
333,191
document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)
The aim of the present work was to elucidate the role of NADPH oxidase in hypoxia sensing and transduction in the carotid body (CB) chemoreceptor cells. We have studied the effects of several inhibitors of NADPH oxidase on the normoxic and hypoxia-induced release of [3H]catecholamines (CA) in an in vitro preparation of intact CB of the rat and rabbit whose CA deposits have been labeled by prior incubation with the natural precursor [3H]tyrosine. It was found that diphenyleneiodonium (
DPI
; 0.2-25 microM), an inhibitor of NADPH oxidase, caused a dose-dependent release of [3H]CA from normoxic CB chemoreceptor cells. Contrary to hypoxia,
DPI
-evoked release was only partially
Ca2+
dependent. Concentrations of
DPI
reported to produce full inhibition of NADPH oxidase in the rat CB did not prevent the hypoxic release response in the rat and rabbit CB chemoreceptor cells, as stimulation with hypoxia in the presence of
DPI
elicited a response equaling the sum of that produced by
DPI
and hypoxia applied separately. Neopterin (3-300 microM) and phenylarsine oxide (0.5-2 microM), other inhibitors of NADPH oxidase, did not promote release of [3H]CA in normoxic conditions or affect the response elicited by hypoxia. On the basis of effects of neopterin and phenylarsine oxide, it is concluded that NADPH oxidase does not appear to play a role in oxygen sensing or transduction in the rat and rabbit CB chemoreceptor cells in vitro and, in the context of the present study, that
DPI
effects are not related to NADPH oxidase inhibition.
...
PMID:NADPH oxidase inhibition does not interfere with low PO2 transduction in rat and rabbit CB chemoreceptor cells. 1006 86
Offspring of rats with diabetes mellitus are at risk of reduced
calcium
and bone mineral content. Altered expression of the maternal
calcium
binding proteins, calbindin-D(9K) and calbindin-D(28K), which are involved in renal and placental
calcium
transport, may underlie these problems.We have investigated the effect of diabetes on circulating concentrations of regulatory hormones with respect to calbindin-D mRNA concentrations. Three rat groups were studied; control (CP), streptozotocin-induced diabetic (DP), and insulin-treated diabetic (
DPI
) pregnant rats. Calbindin-D(9K) and calbindin-D(28K) mRNA abundance in placenta and maternal kidney were measured at days 7, 15, 18 and 21 of gestation, together with serum or plasma concentrations of 1,25 dihydroxyvitamin D(3) (1, 25(OH)(2)D(3)), parathyroid hormone (PTH), PTH-related protein (PTHrP), calcitonin, oestradiol and IGF-I. An increase in placental calbindin-D(9K) mRNA abundance between days 18 and 21 in CP and
DPI
rats was severely blunted in the DP rats. In contrast, renal calbindin-D(28K) mRNA abundance was greater at days 7, 15 and 18 in DP compared with CP rats, as was calbindin-D(9K) at day 18. Calcitonin concentrations showed no differences between the groups, and both PTH and IGF-I were reduced over the first half of gestation, unlike the calbindins. In contrast, the concentrations of PTHrP and 1,25(OH)(2)D(3) were reduced at term in the DP group compared with the other two groups. Plasma oestradiol concentrations were lower in DP than in CP rats at days 7, 15 and 18, and most striking was the absence in DP rats of the peak of oestradiol seen at day 18 in CP rats. Despite the similarity between changes in placental calbindin mRNA and 1,25(OH)(2)D(3), previous work has shown placental calbindin-D(9K) regulation to be vitamin-D-independent. These studies produce suggestive evidence, therefore, that PTHrP and oestradiol may be involved in the altered calbindin-D expression by kidney and placenta in rat diabetic pregnancy.
...
PMID:Altered calbindin mRNA expression and calcium regulating hormones in rat diabetic pregnancy. 1060 39
Elevated levels of arsenite, the trivalent form of arsenic, in drinking water correlates with increased vascular disease and vessel remodeling. Previous studies from this laboratory demonstrated that environmentally relevant concentrations of arsenite caused oxidant-dependent increases in nuclear transcription factor levels in cultured porcine vascular endothelial cells. The current studies characterized the reactive species generated in these cells exposed to levels of arsenite that initiate cell signaling. These exposures did not deplete 5'-triphosphate, nor did they affect basal or bradykinin-stimulated intracellular free
Ca2+
levels, indicating that they were not lethal. Electron paramagnetic resonance (EPR) spectroscopy, including spin trapping with carboxy-PTIO (cPTIO), demonstrated that 5 microM or less of arsenite did not increase *NO levels over a 30-min period relative to *NO release stimulated by bradykinin. However, these same levels of arsenite rapidly increased both oxygen consumption and superoxide formation, as measured by EPR oximetry and spin trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), respectively. Pretreatment of the cells with
DPI
, apocynin, or superoxide dismutase abolished arsenite-stimulated DMPO-OH adduct formation. Finally arsenite increased extracellular accumulation of H2O2, measured as oxidation of homovanillic acid, with the same time and dose dependence, as seen for superoxide formation. These data suggest that superoxide and H2O2 are the predominant reactive species produced by endothelial cells after arsenite exposures that stimulate cell signaling and activate transcription factors.
...
PMID:Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. 1064 35
BDF 9198 (a congener of
DPI
201 - 106 and BDF 9148) was found to be a positive inotrope on guinea-pig isolated ventricular muscle strips. The effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes were studied using the whole cell patch clamp method. In normal external solution, at 37 degrees C, action potential duration at 50% repolarization (APD(50)) was 167.4+/-8.36 ms (n=37). BDF 9198 produced a concentration-dependent increase in APD(50) (no significant increase at 1x10(-10) M; and APD(50) values of 273.03+/-35.8 ms at 1x10(-9) M; n=6, P<0.01 and 694.7+/-86.3 ms at 1x10(-7) M; P<0.001, n=7). At higher concentrations in the range tested, BDF 9198 also induced early and delayed and after-depolarizations. Qualitative measurements of I(Na) with physiological [Na](o) showed prolongation of the current by BDF 9198, and the appearance of transient oscillatory inward currents at high concentrations. Quantitative recording conditions for I(Na) were established using low external [Na] and by making measurements at room temperature. The current - voltage relation, activation parameters and time-course of I(Na) were similar before and after a partial blocking dose of Tetrodotoxin (TTX, 1 microM), despite a 2 fold difference in current amplitude. This suggests that voltage-clamp during flow of I(Na) was adequately maintained under our conditions. Selective measurements of I(Na) at room temperature showed that BDF 9198 induced a concentration-dependent, sustained component of I(Na) (I(Late)) and caused a slight left-ward shift in the current - voltage relation for peak current. The drug-induced I(Late) showed a similar voltage dependence to peak current in the presence of BDF 9198. Both peak current and I(Late) were abolished by 30 microM TTX and were sensitive to external [Na]. Inactivation of control I(Na) during a 200 ms test pulse to -30 mV followed a bi-exponential time-course. In addition to inducing a sustained current component, BDF 9198 left the magnitude of the fast inactivation time-constant unchanged, but increased the magnitude of the slow inactivation time-constant. Additional experiments with a longer pulse (1 s) raised the possibility that in the presence of BDF 9198, I(Na) inactivation may be comprised of more than two phases. No significant effects of 1x10(-6) M BDF 9198 were observed on the L-type
calcium
current, or delayed and inward rectifying potassium currents measured at 37 degrees C. It is concluded that the prolongation of APD(50) by BDF 9198 resulted from selective modulation of I(Na). Reduced current inactivation induced a persistent I(Na), increasing the net depolarizing current during the action potential. This action of the drug indicates a potential for 'QT prolongation' of the ECG. The observation of after-depolarizations suggests a potential for proarrhythmia at some drug concentrations.
...
PMID:Effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes. 1095 63
The Na+ channel agonists
DPI
201-106, BDF 9148 and BDF 9198 are a new group of positive inotropic agents which increase cardiac contractility in a cAMP independent manner. The most likely mechanism by which positive inotropy is mediated is an enhancement of Na+/
Ca2+
exchange activity in response to a Na+ channel agonist induced increase in the cardiac myocyte intracellular Na+ concentration. While the positive inotropic effect of drugs which exert their effects in a cAMP dependent manner is blunted in failing compared to nonfailing myocardium, the efficacy and potency of Na+ channel agonists is not only maintained, but enhanced in failing myocardium. This finding makes these substances interesting for the treatment of patients with heart failure. The positive inotropic effects of the Na+ channel agonists, however, are accompanied by a potential increase in the incidence of cardiac arrhythmias. These side effects might limit the clinical use of Na+ channel agonists and demand future development of Na+ channel modulators without significant arrhythmogenic effects.
...
PMID:Na+ channel activators as positive inotropic agents for the treatment of chronic heart failure. 1185 56
Proline-rich tyrosine kinase 2 (PYK2), structurally related to focal adhesion kinase, has been shown to play a role in signaling cascades. Endothelial cells (ECs) under hemodynamic forces increase reactive oxygen species (ROS) that modulate signaling pathways and gene expression. In the present study, we found that bovine ECs subjected to cyclic strain rapidly induced phosphorylation of PYK2 and Src kinase. This strain-induced PYK2 and Src phosphorylation was inhibited by pretreating ECs with an antioxidant N-acetylcysteine. Similarly, ECs exposed to H(2)O(2) increased both PYK2 and Src phosphorylation. An increased association of Src to PYK2 was observed in ECs after cyclic strain or H(2)O(2) exposure. ECs treated with an inhibitor to Src (PPI) greatly reduced Src and PYK2 phosphorylation, indicating that Src mediated PYK2 activation. Whereas the protein kinase C (PKC) inhibitor (calphostin C) pretreatment was shown to inhibit strain-induced NADPH oxidase activity, ECs treated with either calphostin C or the inhibitor to NADPH oxidase (
DPI
) reduced strain-induced ROS levels and then greatly inhibited the Src and PYK2 activation. In contrast to the activation of PYK2 and Src with
calcium
ionophore (ionomycin), ECs treated with a Ca(2+) chelator inhibited both phosphorylation, indicating that PYK2 and Src activation requires Ca(2+). ECs transfected with antisense to PKCalpha, but not antisense to PKCepsilon(,) reduced cyclic strain-induced PYK2 activation. These data suggest that cyclic strain-induced PYK2 activity is mediated via Ca(2+)-dependent PKCalpha that increases NADPH oxidase activity to produce ROS crucial for Src and PYK2 activation. ECs under cyclic strain thus activate redox-sensitive PYK2 via Src and PKC, and this PYK2 activation may play a key role in the signaling responses in ECs under hemodynamic influence.
...
PMID:Cyclic strain activates redox-sensitive proline-rich tyrosine kinase 2 (PYK2) in endothelial cells. 1236 97
We investigated the effects of two purported
calcium
sensitizing agents, MCI-154 and
DPI
201-106, and a known
calcium
sensitizer caffeine on Mg-ATPase (myofibrillar ATPase) and myosin ATPase activity of left ventricular myofibrils isolated from non-failing, idiopathic (IDCM) and ischemic cardiomyopathic (ISCM) human hearts (i.e. failing hearts). The myofibrillar ATPase activity of non-failing myofibrils was higher than that of diseased myofibrils. MCI-154 increased myofibrillar ATPase
Ca2+
sensitivity in myofibrils from non-failing and failing human hearts. Effects of caffeine similarly increased
Ca2+
sensitivity. Effects of
DPI
201-106 were, however, different. Only at the 10(-6) M concentration was a significant increase in myofibrillar ATPase
calcium
sensitivity seen in myofibrils from non-failing human hearts. In contrast, in myofibrils from failing hearts,
DPI
201-106 caused a concentration-dependent increase in myofibrillar ATPase
Ca2+
sensitivity. Myosin ATPase activity in failing myocardium was also decreased. In the presence of MCI-154, myosin ATPase activity increased by 11, 19, and 24% for non-failing, IDCM, and ISCM hearts, respectively.
DPI
201-106 caused an increase in the enzymatic activity of less than 5% for all preparations, and caffeine induced an increase of 4, 11, and 10% in non-failing, IDCM and ISCM hearts, respectively. The mechanism of restoring the myofibrillar
Ca2+
sensitivity and myosin enzymatic activity in diseased human hearts is most likely due to enhancement of the
Ca2+
activation of the contractile apparatus induced by these agents. We propose that myosin light chain-related regulation may play a complementary role to the troponin-related regulation of myocardial contractility.
...
PMID:Mg-ATPase and Ca+ activated myosin AtPase activity in ventricular myofibrils from non-failing and diseased human hearts--effects of calcium sensitizing agents MCI-154, DPI 201-106, and caffeine. 1270 47
Airway inflammation is a characteristic feature in airway diseases such as asthma and chronic obstructive pulmonary disease. Oxidative stress, caused by the excessive production of reactive oxygen species by inflammatory cells like macrophages, eosinophils and neutrophils, is thought to be important in the complex pathogenesis of such airway diseases. The
calcium
-sensing regulatory protein calmodulin (CaM) binds and regulates different target enzymes and proteins, including
calcium
channels. In the present study, we investigated whether CaM, via the modulation of calcium channel function, influences [Ca(2+)](i) in pulmonary inflammatory cells, and consequently, modulates the production of reactive oxygen species by these cells. This was tested with a peptide termed
calcium
-like peptide 2 (CALP2), which was previously shown to regulate such channels. Specifically, radical production by purified broncho-alveolar lavage cells from guinea-pigs in response to CALP2 was measured. CALP2 was a strong activator of alveolar macrophages. In contrast, CALP2 was only a mild activator of neutrophils and did not induce radical production by eosinophils. The CALP2-induced radical production was mainly intracellular, and was completely blocked by the NADPH-oxidase inhibitor
DPI
, the superoxide inhibitor SOD and the CaM antagonist W7. Furthermore, the calcium channel blocker lanthanum partly inhibited the cellular activation by CALP2. We conclude that alveolar macrophages, but not neutrophils or eosinophils, can produce extremely high amounts of reactive oxygen species when stimulated via the
calcium
/CaM pathway. These results may contribute to new therapeutic strategies against oxidative stress in airway diseases.
...
PMID:Specific modulation of calmodulin activity induces a dramatic production of superoxide by alveolar macrophages. 1463 77
The primary objective of the current study was to investigate possible relationships between calyculin A (CA)-mediated potentiation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and inhibition of store-operated uptake of
Ca2+
by chemoattractant-activated human neutrophils. Treatment of neutrophils with 100 nM CA, but not at lower concentrations (12.5-50 nM), prior to the addition of the N-formylated chemotactic tripeptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) (1 microM), both potentiated and prolonged the activity of NADPH oxidase which was accompanied by exaggerated membrane depolarisation, delayed and attenuated membrane repolarisation, and inhibition of store-operated
Ca2+
influx. Inclusion of diphenylene iodonium chloride (
DPI
, 10 microM), an inhibitor of NADPH oxidase, antagonised the effects of CA on NADPH oxidase activity and the membrane repolarisation responses of FMLP-activated neutrophils, but failed to restore store-operated influx of
Ca2+
. Similarly, CA also inhibited store-operated influx of
Ca2+
into FMLP-activated neutrophils from a patient with chronic granulomatous disease, a primary immunodeficiency disorder characterised by the absence of a functional NADPH oxidase. CA also inhibited the store-operated influx of
Ca2+
into control neutrophils treated with 1 microM thapsigargin, a selective inhibitor of the endomembrane Ca2+-ATPase, which does not activate NADPH oxidase. Taken together, these observations demonstrate that augmentation of NADPH oxidase activity is not primarily involved in CA-mediated inhibition of the store-operated influx of
Ca2+
into activated human neutrophils.
...
PMID:Investigation into the relationship between calyculin A-mediated potentiation of NADPH oxidase activity and inhibition of store-operated uptake of calcium by human neutrophils. 1545 Sep 37
This study investigates the effects of one of the most frequently used brominated flame-retardants (BFR), tetrabromobisphenol-A (TBBPA), on formation of reactive oxygen species (ROS) and
calcium
levels in human neutrophil granulocytes. TBBPA enhanced ROS production in a concentration-depended manner (1-12 microM), measured as 2,7-dichlorofluorescein diacetate amplified (DCF) fluorescence. The results on ROS production by TBBPA was confirmed by lucigenin-amplified chemiluminescence. The TBBPA induced formation of ROS was due to activation of respiratory burst, as shown by the NADPH oxidase inhibitor
DPI
(10 microM). TBBPA induced activation of respiratory burst was also inhibited by the MEK 1/2 inhibitor U0126 (10 microM), the PKC inhibitor BIM (0.25 microM), and the tyrosine kinase inhibitor erbstatin-A (25 microM). We also found a small reduction in ROS formation in the absence of extracellular
calcium
and when verapamil was added. The phosphorylation of ERK 1/2 was confirmed by Western blotting. TBBPA also induced a concentration dependent increase in intracellular free
calcium
measured with Fura-2/AM. We suggest that exposure of human neutrophil granulocytes to the brominated flame retardant TBBPA leads to an activation of the NADPH oxidase primarily by an ERK 1/2 stimulated pathway. The data also show that PKC,
calcium
, and tyrosine kinases may be involved in the activation.
...
PMID:The effect of a brominated flame retardant, tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes: the involvement of the MAP kinase pathway and protein kinase C. 1545 14
<< Previous
1
2
3
4
5
6
7
8
9
Next >>