Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: CAS:7440-70-2 (calcium)
333,191 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

L-type calcium channels mediate long-lasting calcium currents which are modulated by protein phosphorylation. Using site-directed anti-peptide antibodies, we show that the alpha 1 subunit of the neuronal class C L-type calcium channel from rat brain exists in two size forms. The longer form, LC2, with an apparent molecular mass of 210-235 kDa was phosphorylated in vitro by cAMP-dependent protein kinase (cA-PK), but the shorter form, LC1, with an apparent molecular mass of 190-195 kDa was not a substrate for cA-PK. In contrast, LC1 and LC2 are both substrates for protein kinase C (PKC), calcium- and calmodulin-dependent protein kinase II, and cGMP-dependent protein kinase (cG-PK). The site-directed anti-peptide antibody CNC2 was produced against the COOH-terminal end of the class C L-type alpha 1 subunit as predicted by molecular cloning and sequencing of cDNA. CNC2 recognized LC2 but not LC1 by immunoblotting and immunoprecipitated only LC2 phosphorylated by either cA-PK or PKC. These results indicate that LC1 is truncated at its COOH-terminal end with respect to LC2 and that cA-PK preferentially phosphorylates sites in the COOH-terminal region of the alpha 1 subunit that are present in LC2 but not LC1. The selectivity of cA-PK for phosphorylation of the COOH-terminal region of LC2 suggests that the channel activities of the two alpha 1 subunit size forms may be differentially regulated by neurotransmitters and hormones which act through cAMP-dependent mechanisms, while both alpha 1 subunit isoforms may be modulated by PKC, cG-PK, and calcium- and calmodulin-dependent protein kinase II.
...
PMID:Differential phosphorylation of two size forms of the neuronal class C L-type calcium channel alpha 1 subunit. 839 38

We have previously demonstrated that the metabotropic glutamate receptor (mGluR) agonist (1S,3R)-1 aminocyclopentane-1,3-dicarboxylate (ACPD) presynaptically inhibits evoked glutamatergic EPSCs and GABAergic IPSCs in patch clamped rat nucleus tractus solitarius (NTS) neurons recorded in this slices. The present study investigated the pharmacology of the presynaptic mGluRs, the the voltage dependent Ca2+ channel (VDCC) subtypes supporting neurotransmitter release, and possible interactions between the two. Monosynaptic EPSCs or IPSCs were evoked by electrical stimulation in the region of the tractus solitarius (TS). The effects of the mGluR agonists ACPD, (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine (L-CCG-I) and L-2-amino-4-phosphonobutyrate (AP4) were examined upon EPSCs. The effects of the above compounds and quisqualate (QUIS) were examined upon IPSCs. L-CCG-I proved the most potent inhibitor of EPSCs and IPSCs. The VDCC blockers omega-AGA-IVA (AGA), omega-conotoxin GVIA (GVIA), omega-conotoxin MVIIC (MVIIC) and nimodipine (NIM) were assessed for their ability to inhibit monosynaptic EPSCs and IPSCs. EPSCs were inhibited by GVIA >> AGA > or = MVIIC. IPSCs were inhibited by AGA > or = MVIIC >> GVIA. NIM was without effect on the EPSC or IPSC. The potency of mGluR inhibition of evoked synaptic transmission was assessed in the absence and following treatment with VDCC blockers. mGluR agonists blocked a greater percentage of the EPSC or IPSC following treatment with GVIA, but not the other VDCC antagonists, than under control conditions. We have previously demonstrated that the postsynaptic inhibitory effects of mGluR activation upon GABAA mediated currents can be mimicked by cyclic guanosine monophosphate (cGMP) analogs. The cGMP-dependent protein kinase (PKG) inhibitors H8 and Rp-8-4-chlorophenylthio-guanosine-3',5'-cyclic monophosphorothioate (Rp-cG) blocked mGluR inhibition of GABAA mediated currents without blocking the ability of mGluR agonists to inhibit the IPSC. The effect of L-CCGI was enhanced following treatment with GVIA in the presence of Rp-cG, confirming a presynaptic locus of mGluR mediated inhibition of the IPSC. In contrast, cGMP analogues potentiate postsynaptic responses to glutamate agonists but depress the EPSC. As with the mGluR agonists, the inhibition of the EPSC by cGMP was potentiated following treatment with GVIA. These results suggest that presynaptic mGluR reduce both glutamate release from afferent fibers and GABA release from inhibitory interneurons following electrical stimulation in the region of the TS. Although different VDCCs support the majority of glutamate and GABA release and mGluR effects on release appear to utilize differing intracellular pathways, presynaptic GVIA-insensitive VDCCs are favorably targeted for inhibition by mGluR agonists.
...
PMID:Presynaptic metabotropic glutamate receptors modulate omega-conotoxin-GVIA-insensitive calcium channels in the rat medulla. 853 76

Sarcoplasmic reticulum (SR) vesicles were prepared from either canine or sheep heart and fused into lipid bilayers to study their ionic channels. A 92 +/- 5 pS anion-selective channel was recorded in asymmetric 50 mM trans/250 mM cis CsCl buffer system. Reversal potentials and theoretical equilibrium potentials for Cl-ions obtained under various experimental conditions allowed us to confirm the Cl- selectivity of this SR channel. The majority (69%) of channel recordings (n = 45) displayed steady-state kinetics and a slight voltage dependency of the open probability. However, 31% of the channels inactivated after their incorporation. We now report that the channel might be reactivated by depolarizing voltage steps. Furthermore, the use of either PKA or PKG in association with adequate phosphorylating buffers lengthens the deactivation process at the end of the voltage pulses, but does not prevent the inactivation. It was assumed that the change in gating mode was due to a voltage-sensitive association/dissociation mechanism with a phosphorylated protein of the SR membrane such as phospholamban (PL). We demonstrated that a specific monoclonal antibody raised against canine PL inhibited the activity of the channel and prevented its reactivation by depolarizing steps. 400 to 800 ng/ml of Anti-PL Ab consistently and sequentially turned off the channel activities. In contrast, heat inactivated Anti-PL Ab had no effect. We propose that phospholamban may be a primer of the SR Cl- channel whereby Cl- anions would play the role of counter-charge carrier during rapid Ca2+ release and Ca2+ uptake by the SR.
...
PMID:Examination of the role of phosphorylation and phospholamban in the regulation of the cardiac sarcoplasmic reticulum Cl- channel. 856 46

New method for purification of phosphatase inhibitor 1 (PPI-1) was developed which avoid the phosphorylation of PPI-1 during the purification and provides a high yield of highly pure preparation. Using this preparation, it was shown that PPI-1 was stoichiometrically phosphorylated by cGMP-dependent protein kinase at Thr-35 and the phosphorylated PPI-1 potently inhibited protein phosphatase 1. Addition of the phosphorylated PPI-1 to beta-escin-skinned single smooth muscle cells resulted in force development of the cells at the submaximal pCa2+. The results suggest that the phosphorylation of PPI-1 can be the mechanism for modifying the Ca2+ sensitivity of smooth muscle contractile response.
...
PMID:Enhancement of smooth muscle contraction with protein phosphatase inhibitor 1: activation of inhibitor 1 by cGMP-dependent protein kinase. 860 41

The cAMP/cAMP-dependent protein kinase (A-kinase) and Ca2+/calmodulin-dependent protein kinase (Cam-kinase) signal transduction pathways are well known to regulate gene transcription, but this has not been demonstrated directly for the cGMP/cGMP-dependent protein kinase (G-kinase) signal transduction pathway. Here we report that transfection of G-kinase into G-kinase-deficient cells causes activation of the human c-fos promoter in a strictly cGMP-dependent manner. The effect of G-kinase appeared to be mediated by several sequence elements, most notably the serum response element (SRE), the AP-1 binding site (FAP), and the cAMP response element (CRE). The magnitude of G-kinase transactivation of the fos promoter was similar to that of A-kinase, but there were significant differences between G-kinase and A-kinase activation of single enhancer elements and of a chimeric Gal4-CREB transcription factor. Our results indicate that G-kinase transduces signals to the nucleus independently of A-kinase or Ca2+, although it may target some of the same transcription factors as A-kinase and Cam-kinase.
...
PMID:Regulation of gene expression by cGMP-dependent protein kinase. Transactivation of the c-fos promoter. 861 18

Elevation of intracellular cGMP and activation of cGMP-dependent protein kinase (PKG) in vascular smooth-muscle cells produces relaxation, but mechanisms distal to PKG activation are not well understood. Few PKG substrates have been described in smooth muscle that may mediate the action of PKG, including P240, P132 and phospholamban. None of them is a specific PKG substrate, raising the question of whether any specific PKG substrates possibly exist in vascular smooth muscle that may play roles in relaxation. In this study PKG substrates were detected in aortic smooth muscle by adding purified exogenous PKG and [gamma-32P]-ATP. Very few PKG substrates were detectable in whole-tissue homogenates or detergent-solubilized fractions, due to the high basal activity of other protein kinases and the large numbers of other phosphoproteins. Heat or acid treatment of such fractions, to remove any endogenous protein kinase activity and achieve partial protein purification, revealed many potential PKG substrates. Of the 3 substrates identified previously, P240 and P132 were partly heat-stable. Thirty-one new PKG substrates were found: 14 in the initial heat-stable extract and 9 in the heat- and acid-soluble extract, whereas the others were revealed only after chromatography. All of the heat-stable PKG substrates were bound and salt-eluted from a DEAE-cellulose column in 2 major peaks called pool I and II. After sequential application to Q-Sepharose and S-Sepharose columns, 7 PKG substrates were found in pool I, in particular a group of 4 substrates of 40, 33, 28 and 22 kD virtually coeluted through all 3 columns. The former 3 produced similar phosphopeptide maps, suggesting a relationship. All the new substrates from pool I were relatively specific for PKG because they were poorly phosphorylated with exogenous cAMP-dependent protein kinase and not with Ca2+/phospholipid-dependent protein kinase. Further chromatography of the proteins in pool II resulted in an extensive purification of P132 as well as a group of 4 PKG substrates of 33-30 kD. Phosphopeptide mapping of the 132-kD protein revealed a close homology to the 132-kD PKG substrate previously described in rat aortic smooth muscle. These data demonstrate the presence of multiple substrates for PKG in aortic smooth-muscle tissue.
...
PMID:Multiple substrates for cGMP-dependent protein kinase from bovine aortic smooth muscle: purification of P132. 863 Mar 52

In contrast to excitable tissues where calcium channels are well characterized, the nature of the B lymphocyte calcium channel is unresolved. Here, we demonstrate by single cell analysis of freshly isolated rat B cells that the anti-immunoglobulin (Ig)-induced calcium influx takes place through a channel which shares pharmacologic and serologic properties with the L-type calcium channel found in excitable tissues. It is sensitive to the dihydropyridines nicardipine and Bay K 8644, to calciseptine, and to an anti-peptide antibody raised against the alpha1 subunit of the L-type calcium channel, but is voltage-insensitive. Anti-alpha1 and anti-alpha2 antibodies stain B but not T lymphocytes. Application of a cGMP agonist, measurement of cGMP levels in anti-Ig-stimulated B cells, and examining the effect of a guanylyl cyclase inhibitor on the anti-Ig response show that cGMP mediates the influx. This possibly involves a cGMP-dependent protein kinase. The anti-Ig-induced response is not abolished by prior treatment of B cells with a high dose of thapsigargin. These findings undermine the widely held belief of a categorical divide between excitable and non-excitable tissue calcium channels, demonstrate the limitations of the capacitative calcium influx theory, and point to a distinction between the calcium response mechanisms utilized by B and T lymphocytes.
...
PMID:Anti-Ig-induced calcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridine-sensitive channel. 863 46

The signal transduction cascade between the activation of the somatostatin (SOM) receptor and modulation of transmitter release was study using Acetylcholine (Ach) release measurements and patch clamp recordings of Ca2+ current from acutely dissociated St 40 ciliary ganglion neurons. As in intact synapses, somal ACh release was blocked by 100 nM SOM or 100 microM dibutyril cGMP, and the SOM-mediated inhibition could be reversed by 10 microM 1-NAME (a selective inhibitor of nitric oxide synthase, NOS) or 100 microM Rp-8p-CPT-cGMPs (a selective inhibitor of a cGMP protein dependent kinase, PKG). In whole cell recordings, SOM inhibition of Ca2+ current rapidly relaxes to control levels but is sustained in perforated patch recordings which decreases cell dialysis. Inhibition of NOS or PKG in perforated patch recordings, however caused SOM effects to become transient again. We hypothesize that PKG alters the characteristics of the membrane-delimited G protein inhibition of Ca2+ current. Therefore SOM receptors trigger a membrane-delimited signal transduction cascade that is modulated by soluble messengers, converging on voltage activated Ca2+ channels. When both pathways are active together, SOM causes a sustained inhibition of neuronal Ca2+ current leading to a decrease in transmitter release.
...
PMID:Membrane delimited and intracellular soluble pathways in the somatostatin modulation of ACh release. 863 27

Both sodium nitroprusside (SNP), a nitric oxide (NO) generator, and C-type natriuretic peptide (CNP) have been found to raise cGMP levels in bovine chromaffin cells in a time- and concentration-dependent manner. The effect of these compounds on catecholamine secretion and calcium influx has also been studied, and both compounds were found to produce a slowly developing inhibitory effect on acetylcholine- or depolarization-stimulated catecholamine secretion and calcium increases without affecting the spontaneous release or the basal intracellular Ca2+ concentration. These inhibitory effects were observed only at high doses of acetylcholine or high levels of extracellular potassium and required concentrations of SNP or CNP very similar to those that increased cGMP levels. Preincubation with 100 microM zaprinast, a cGMP-phosphodiesterase inhibitor able to increase cGMP levels, mimicked the inhibitory effects of SNP and CNP. We investigated the effect of the soluble guanylate cyclase inhibitor methylene blue and the cGMP-dependent protein kinase (PKG) inhibitor 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphorothioate, Rp isomer, on inhibition by SNP or CNP. Although methylene blue (10 microM) partially prevented the inhibitory effect of SNP, it did not do so for that produced by CNP, thus indicating that SNP acts through cGMP produced by the NO-activated guanylate cyclase. 8-(4-Chlorophenylthio)-guanosine 3',5'-cyclic monophosphorothioate, Rp isomer totally reversed both the SNP and CNP inhibitory effects. These results suggest that the activation of PKG mediates the inhibition induced by SNP and CNP. We successfully measured the PKG activity from cells preincubated with SNP or CNP, and our results show that this enzymatic activity increased with a time dependence very similar to the increase in the cGMP levels. Our results indicate that NO and CNP peptide inhibit secretagogue-stimulated catecholamine release via activation of soluble and particulate isoforms of the guanylate cyclase, respectively, presumably by inhibition of calcium entry through voltage-activated calcium channels. This inhibitory effects seems to be mediated by activation of the PKG.
...
PMID:Effect of cyclic GMP-increasing agents nitric oxide and C-type natriuretic peptide on bovine chromaffin cell function: inhibitory role mediated by cyclic GMP-dependent protein kinase. 864 44

Of two neurosecretory PC12 cell clones that respond to NO donors and 8-bromo-cGMP with similar increases in cADP-ribose and that possess molecularly similar Ca2+ stores, only one (clone 16A) expresses the type 2 ryanodine receptor, whereas the other (clone 27) is devoid of ryanodine receptors. In PC12-16A cells, activation of the NO/cGMP pathway induced slow [Ca2+]i responses, sustained by release from Ca2+ stores. In contrast, PC12-27 cells were insensitive to NO donors. Likewise, in PC12-16A cells preincubated with NO donors, Ca2+ stores were partially depleted, as revealed by a test with thapsigargin, whereas those in clone 27 were unchanged. The NO-induced Ca2+ release was increased synergistically by caffeine, and the corresponding store depletion was magnified by ryanodine. The specificity for the NO/cGMP pathway was confirmed by the effects of two blockers of cGMP-dependent protein kinase I, while the role of cADP-ribose was demonstrated by the effects of its antagonist, 8-amino-cADP-ribose, administered to permeabilized cells. These results demonstrate in neurosecretory cells a ryanodine receptor activation pathway similar to that known in sea urchin oocytes. The signaling events described here could be of great physiological importance, especially in the nervous system.
...
PMID:The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway. 866 43


<< Previous 1 2 3 4 5 6 7 8 9 10