Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: CAS:7440-70-2 (calcium)
333,191 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

The effect of the nitric oxide (NO) donor SIN-1 (3-morpholino-sydnonimine) on the calcium current (ICa) was examined in guinea pig ventricular myocytes. SIN-1 had little effect on basal ICa. After moderate stimulation of ICa with 10 nM isoproterenol (ISO), 10 microM SIN-1 caused either stimulation or inhibition of ICa; 100 microM SIN-1 consistently caused inhibition. SIN-1 (1-100 microM) inhibited ICa equally following considerable enhancement of ICa by either 1 microM ISO or 100 microM 3-isobutyl-1-methylxanthine, a nonspecific phosphodiesterase (PDE) inhibitor. SIN-1 (100 microM) also inhibited ICa equally following enhancement by either 10 microM pipette adenosine 3',5'-cyclic monophosphate (cAMP) or hydrolysis-resistant 8-bromo-cAMP. Thus the inhibitory effect of SIN-1 appears independent of PDEs. Addition of LY-83583 (a blocker of guanylate cyclase) to the pipette or superfusion with KT-5823 [a blocker of the guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase] suppressed the inhibitory effect of SIN-1. We conclude that NO is an important modulator of beta-adrenergic effects on ICa and that the mechanism of NO inhibition of ICa in mammalian cardiac cells involves the cGMP-dependent protein kinase.
...
PMID:Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. 753 Sep 9

We have examined the regulation of neuronal nitric oxide synthase (NOS) by phosphorylation with cyclic-GMP (PKG) and cyclic-AMP-dependent (PKA) protein kinases. In vitro phosphorylation studies indicate that both PKG and PKA phosphorylate NOS on a single site. Phosphoamino-acid analysis and peptide mapping demonstrate that phosphorylation by either cyclic-nucleotide kinase occurs on a similar serine residue. Phosphorylation of purified NOS by either PKG or PKA diminishes catalytic activity. Stimulation by 8-Br-cGMP of HEK-293 cells stably transfected with the cDNA for neuronal NOS (293.NOS cells) results in phosphorylation of immunoprecipitated NOS. Incubation of 293-NOS cells with 8-bromo-cGMP or dibutyryl-cAMP reduces nitrite release in response to stimulation with calcium ionophore A23187. Phosphorylation-induced decreases in NOS activity may counterbalance and modulate NOS activating signals.
...
PMID:Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity. 753 10

Nitric oxide is a signaling molecule involved in events crucial to neuronal cell function, such as neurotransmitter release, gene transcription, and neurotoxicity, i.e., a number of processes in which a key role appears to be played by increases in intracellular Ca2+ concentration. In the neurosecretory/neuronal cell line PC-12, we have investigated the role of nitric oxide in the modulation of Ca2+ release from intracellular stores elicited by activation of three different receptors coupled to phosphatidyl-inositol-4,5-bisphosphate hydrolysis, i.e., the purinergic P2U, muscarinic M3, and bradykinin B2 receptors. The results obtained show that nitric oxide donors have an inhibitory effect on agonist-evoked Ca2+ release. This effect is not due to nitric oxide-induced modifications of Ca2+ storage, because the total releasable Ca2+ pool, measured as the radioactivity released by thapsigargin and ionomycin in cells loaded at equilibrium with 45Ca2+, was unchanged. In contrast, nitric oxide donors decreased agonist-evoked inositol-1,4,5-trisphosphate generation and total inositol phosphate accumulation. Similarly, nitric oxide inhibited total inositol phosphate accumulation stimulated by either aluminium fluoride or Ca2+. All of these effects were mimicked by the cGMP analogue 8-bromo-cGMP. When cells were incubated with nitric oxide synthase inhibitors, the results observed were opposite those produced by nitric oxide donors. All of the effects of nitric oxide were abolished when cells were treated with the cGMP-dependent protein kinase I inhibitor KT5823. Furthermore, KT5823 mimicked the effects of nitric oxide synthase inhibitors. We conclude that nitric oxide and Ca2+ signaling pathways are interconnected in PC-12 cells. Modulation of inositol phosphate generation and Ca2+ release by nitric oxide appears to be exerted primarily at the level of phospholipase C functioning and to be mediated by the activation of cGMP-dependent protein kinase I.
...
PMID:Nitric oxide modulation of agonist-evoked intracellular Ca2+ release in neurosecretory PC-12 cells: inhibition of phospholipase C activity via cyclic GMP-dependent protein kinase I. 753 79

Vascular endothelial cells (ECs) are constantly subjected to mechanical strain due to relaxation and contraction of vessel walls. The effects of cyclical strain on endothelin-1 (Et-1) secretion and Et-1 mRNA levels in human umbilical vein ECs were examined. Cultured ECs grown on a flexible membrane base were deformed by negative pressure (16 kPa at 60 cycles/min). Cells subjected to strain showed increased Et-1 secretion (0.54 ng/hr/10(6) cells) compared with unstrained control cells (0.22 ng/hr/10(6) cells). Northern blot analysis of cells strained for 2 hours or longer demonstrated a sustained elevated Et-1 mRNA level at more than double the level in unstrained controls. This strain-induced ET-1 mRNA level returned to its basal level 2 hours after the release of strain. Cells treated with actinomycin D before or during strain treatment showed no strain-induced gene expression. Pretreatment of ECs with a protein kinase C (PKC) inhibitor, Calphostin C, strongly inhibited the strain-induced Et-1 gene expression. Pretreatment of ECs with cAMP- or cGMP-dependent protein kinase inhibitors (KT5720 or KT5823) only partially inhibited the increased Et-1 mRNA levels in strain-treated cells. EGTA strongly inhibited the Et-1 gene expression. The intracellular calcium chelator BAPTA/AM also showed an inhibitory effect on Et-1 mRNA levels. We conclude that mechanical strain can stimulate the secretion of Et-1 from ECs by increasing Et-1 mRNA levels via transcription, and that this gene induction is mediated predominantly via the PKC pathway and requires extracellular Ca2+. This strain-induced Et-1 gene expression in ECs may contribute to the regulation of vascular tone and structure in normal and pathological states of the cardiovascular system.
...
PMID:Mechanical strain increases endothelin-1 gene expression via protein kinase C pathway in human endothelial cells. 753 82

In this study, the effect of cGMP on the dihydropyridine-sensitive (L-type) Ca2+ current was investigated using the whole cell version of the patch-clamp technique in rat pinealocytes. Dibutyryl-cGMP (1 x 10(-4) M) induced a pronounced inhibition of the L-type Ca2+ channel current. The dibutyryl-cGMP effect was concentration dependent. Elevation of cGMP by nitroprusside had a similar inhibitory action on the L-type Ca2+ channel current. Norepinephrine, which increased cGMP in rat pinealocytes, also inhibited this current. The action of cGMP was independent of cAMP elevation since the cAMP antagonist, Rp-cAMPs, had no effect on the inhibitory action of dibutyryl-cGMP. The involvement of cyclic GMP-dependent protein kinase was suggested by the blocking action of two protein kinase inhibitors, (1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) and N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), on the dibutyryl-cGMP effect on the L-type Ca2+ channel current. Taken together, these results suggest that (1) cGMP modulates L-type Ca2+ channel currents in rat pinealocytes, causing inhibition of this current; (2) the action of cGMP appears to be independent of cAMP elevation; and (3) phosphorylation by cGMP-dependent protein kinase may be involved.
...
PMID:cGMP inhibits L-type Ca2+ channel currents through protein phosphorylation in rat pinealocytes. 753 27

1. Effects of atrial natriuretic peptide (ANP) on the L-type Ca2+ channels were examined in rabbit isolated ventricular cells by use of whole-cell and cell-attached configurations of the patch clamp methods. ANP produced a concentration-dependent decrease (10-100 nM) in amplitude of a basal Ca2+ channel current. 2. The inactive ANP (methionine-oxidized ANP, 30 nM) failed to decrease the current. 3. 8-Bromo-cyclic GMP (300 microM), a potent activator of cyclic GMP-dependent protein kinase (PKG), produced the same effects on the basal Ca2+ channel current as those produced by ANP. The cyclic GMP-induced inhibition of the Ca2+ channel current was still evoked in the presence of 1-isobutyl-3-methyl-xanthine, an inhibitor of phosphodiesterase. ANP failed to produce inhibition of the Ca2+ channel current in the presence of 8-bromo-cyclic GMP. 4. In the single channel recording, ANP and 8-bromo-cyclic GMP also inhibited the activities of the L-type Ca2+ channels. Both agents decreased the open probability (NPo) without affecting the unit amplitude. 5. The present results suggest that ANP inhibits the cardiac L-type Ca2+ channel activity through the intracellular production of cyclic GMP and then activation of PKG.
...
PMID:Cyclic GMP-mediated inhibition of L-type Ca2+ channel activity by human natriuretic peptide in rabbit heart cells. 754 93

Regulation of L-type Ca2+ channel current [ICa(L)] by cGMP-dependent protein kinase (PK-G) was investigated in ventricular myocytes from 2- to 21-day-old rats using whole-cell voltage clamp with internal perfusion. ICa(L) was elicited by a depolarizing pulse to +10 mV from a holding potential of -40 mV. Stimulated ICa(L) (by 2 mumol/L isoproterenol) was inhibited to the basal level by internal perfusion with 50 nmol/L PK-G (activated by 8Br-cGMP, 0.1 mumol/L). When ICa(L) was enhanced by Bay K8644 (1 mumol/L), the enhanced basal ICa(L) was also reduced by PK-G. Basal ICa(L) (nonstimulated through the cAMP/cAMP-dependent protein kinase [PK-A] pathway) was also inhibited to various degrees (large, medium, or small) by internal application of PK-G (25 nmol/L). The average inhibition was 42.1% (n = 36), and there were no differences in the inhibition during development. The inhibition by PK-G was blocked by the PK-G substrate peptide (cG-PKI, 300 mumol/L) and by heat inactivation of the PK-G. Relatively specific PK-G inhibitors (eg, cG-PKI and H-8) sometimes reversed the inhibition (5 of 25 cells), whereas isoproterenol stimulated ICa(L) (7 of 8 cells). When a holding potential of -80 mV was used, the inhibition produced by PK-G was much less. The inhibitory effects of PK-G were not mediated by activating phosphodiesterase or protein phosphatase but most likely by a direct phosphorylation of the Ca2+ channel or associated regulatory protein. The inhibitory effect of PK-G may be explained by a balance between activities of PK-A and PK-G in regulating the slow Ca2+ channels at two separate sites.
...
PMID:cGMP-dependent protein kinase regulation of the L-type Ca2+ current in rat ventricular myocytes. 755 27

Previous studies demonstrated that the thrombin-induced permeability of endothelial cell monolayers is reduced by the elevation of cGMP. In the present study, the presence of cGMP-dependent protein kinase (cGMP-PK) immunoreactivity and activity in various types of human endothelial cells (ECs) and the role of cGMP-PK in the reduction of thrombin-induced endothelial permeability was investigated. cGMP-PK type I was demonstrated in freshly isolated ECs from human aorta and iliac artery as well as in cultured ECs from human aorta, iliac vein, and foreskin microvessels. Addition of the selective cGMP-PK activator 8-(4-chlorophenylthio)-cGMP (8-pCPT-cGMP) to these ECs caused phosphorylation of the vasodilator-stimulated phosphoprotein (VASP), an established cGMP-PK substrate, which is localized at cell-cell contact sites of confluent ECs. cGMP-PK type I expression decreased during serial passage of ECs, which correlated with a diminished ability of 8-pCPT-cGMP to induce VASP phosphorylation. Preincubation of aorta and microvascular EC monolayers with 8-pCPT-cGMP caused a 50% reduction of the thrombin-stimulated permeability, as determined by measuring the peroxidase passage through EC monolayers on porous filters. Furthermore, the thrombin-induced rise in cytoplasmic [Ca2+]i was strongly attenuated by the cGMP-PK activator in fura 2-loaded aorta ECs. In contrast, cGMP-PK could not be demonstrated in freshly isolated and cultured human umbilical vein ECs. Incubation of umbilical vein ECs with 8-pCPT-cGMP did not cause VASP phosphorylation and had no effect on the thrombin-induced increases in cytoplasmic Ca2+ and endothelial permeability.(ABSTRACT TRUNCATED AT 250 WORDS)
...
PMID:Expression of cGMP-dependent protein kinase I and phosphorylation of its substrate, vasodilator-stimulated phosphoprotein, in human endothelial cells of different origin. 755 43

Exposure of primary cultures of embryonic rat striatal neurons to agents releasing nitric oxide (NO), including sin-1 molsidomine, S-nitroso-n-acetyl-penicillamine (SNAP), and S-nitrosoglutathione, resulted in an increase in the levels of expression of the immediate early genes c-fos and zif/268 in the cultured neurons. The membrane-permeable cGMP analogue, 8-bromo-cGMP, did not significantly affect c-fos and zif/268 mRNA levels, and the highly selective inhibitor of cGMP-dependent protein kinase, KT5823, was unable to inhibit the elevation in c-fos and zif/268 mRNA levels induced by SNAP. The induction of c-fos by the calcium ionophore A23187 was reduced by treatment with SNAP or 8-bromo-cGMP. Inhibitors of ADP-ribosyltransferases attenuated the stimulation of c-fos expression by SNAP. These results demonstrate for the first time that NO can induce immediate early gene expression in neurons, suggesting that NO may act as a mediator of neuronal plasticity via alterations in the expression of downstream genes. In addition, the results suggest that NO may exert these effects through a pathway that does not involve guanylate cyclase and cGMP-dependent protein kinase.
...
PMID:Stimulation of immediate early gene expression in striatal neurons by nitric oxide. 755 90

We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262-10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7 +/- 0.5 pS (n = 78) at room temperature. The Pcation/P(anion) ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10(-6) M and depolarization increases channel activity (NPo). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10(-4) M and 10(-3) M, ATP reduces NPo by 23% and 69%, respectively. Furthermore, since ADP (10(-3) M) reduces NPo by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a gamma-phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10(-4) M) or by cGMP-dependent protein kinase (10(-7) M) in the presence of 8-Br-cGMP (10(-5) M) and ATP (10(-4) M). The NSC channel is not sensitive to amiloride (10(-4) M cytoplasmic and/or extracellular) but flufenamic acid (10(-4) M) produces a voltage-dependent block, reducing NPo by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages. We conclude that the NCS channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.
...
PMID:A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. 756 35


<< Previous 1 2 3 4 5 6 7 8 9 10 Next >>