Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: CAS:7440-70-2 (calcium)
333,191 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

A novel 28 kDa protein, which we have named 'grancalcin', has been identified in human neutrophils. The protein was isolated from the cytosol and found to be a homodimer, with an apparent molecular mass of 55 kDa on gel filtration. Polyclonal antibodies were raised to the native protein. N-Terminal sequence analysis and tryptic-peptide sequence analysis was performed. The protein exhibits sequence similarity to sorcin, a 24 kDa calcium-binding protein over-expressed in certain multi-drug-resistant cell lines. It appears to be a member of the EF-hand family of calcium-binding proteins. The association of a high proportion of this protein with the membranes and granules in the presence of physiological concentrations of calcium may indicate a role in granule-membrane fusion and degranulation.
...
PMID:Isolation and characterization of grancalcin, a novel 28 kDa EF-hand calcium-binding protein from human neutrophils. 153 May 88

A novel EF-hand Ca(2+)-binding protein we have called grancalcin has been identified and characterized. This protein is particularly abundant in neutrophils and monocytes, with relatively small amounts in lymphocytes. The cDNA for this protein has been cloned and sequenced. The sequence predicts that the protein is composed of 217 amino acids, with a molecular mass of 24,010 daltons. It contains four EF-hand calcium-binding motifs and exhibits strong homology to sorcin, one of two proteins overexpressed in multidrug-resistant cells whose function is unknown. There are potentially one phosphorylation and two glycosylation sites. The 1.65-kilobase mRNA is detected in bone marrow and is present in neutrophils, monocytes, macrophages, B and T lymphocytes, and the promyelocytic cell line HL60s. The protein displays a Ca(2+)-dependent translocation to the granules and plasma membrane of neutrophils, suggesting that it might play an effector role in the specialized functions of these cells.
...
PMID:Molecular cloning and characterization of grancalcin, a novel EF-hand calcium-binding protein abundant in neutrophils and monocytes. 173 48

Grancalcin is a Ca(2+)-binding protein expressed at high level in neutrophils. It belongs to the PEF family, proteins containing five EF-hand motifs and which are known to associate with membranes in Ca(2+)-dependent manner. Prototypic members of this family are Ca(2+)-binding domains of calpain. Our recent finding that grancalcin interacts with L-plastin, a protein known to have actin bundling activity, suggests that grancalcin may play a role in regulation of adherence and migration of neutrophils. The structure of human grancalcin has been determined at 1.9 A resolution in the absence of calcium (R-factor of 0.212 and R-free of 0.249) and at 2. 5 A resolution in the presence of calcium (R-factor of 0.226 and R-free of 0.281). The molecule is predominantly alpha-helical: it contains eight alpha-helices and only two short stretches of two-stranded beta-sheets between the loops of paired EF-hands. Grancalcin forms dimers through the association of the unpaired EF5 hands in a manner similar to that observed in calpain, confirming this mode of association as a paradigm for the PEF family. Only one Ca(2+) was found per dimer under crystallization conditions that included CaCl(2). This cation binds to EF3 in one molecule, while this site in the second molecule of the dimer is unoccupied. This unoccupied site shows higher mobility. The structure determined in the presence of calcium, although does not represent a fully Ca(2+)-loaded form, suggests that calcium induces rather small conformational rearrangements. Comparison with calpain suggests further that the relatively small magnitude of conformational changes invoked by calcium alone may be a characteristic feature of the PEF family. Moreover, the largest differences are localized to the EF1, thus supporting the notion that calcium signaling occurs through this portion of the molecule and that it may involve the N-terminal Gly/Pro rich segment. Electrostatic potential distribution shows significant differences between grancalcin and calpain domain VI demonstrating their distinct character.
...
PMID:Crystal structure of human grancalcin, a member of the penta-EF-hand protein family. 1090 68

Grancalcin is a cytosolic Ca(2+)-binding protein originally identified in human neutrophils. It belongs to a new class of EF-hand proteins, called PEF proteins, which contain five EF-hand motifs. At the N-terminus of grancalcin there is a approximately 50 residue-long segment rich in glycines and prolines. The fifth EF-hand, unpaired within the monomer, provides a means for dimerization through pairing with its counterpart in a second molecule. The structure of full-length grancalcin in the apo form and with one EF3 within the dimer occupied by a Ca(2+) ion have been determined. Although the N-terminal segment was present in the molecule, this part was disordered in the crystals. Here, the structure of a truncated form of grancalcin, which is lacking 52 N-terminal residues, in the presence and absence of Ca(2+) is presented. In the Ca(2+)-bound form the ions are found in the EF1 and EF3 hands. Binding of Ca(2+) to these two EF hands produces only minor conformational changes, mostly within the EF1 Ca(2+)-binding loop. This observation supports the hypothesis, formulated on the basis of the structure of a homologous protein ALG-2 which shows significant differences in the orientation of EF4 and EF5 compared with grancalcin, that calcium is a necessary factor but not sufficient alone for inducing a significant conformational change in PEF proteins.
...
PMID:Structure of Ca(2+)-loaded human grancalcin. 1171 97

The penta-EF hand (PEF) family of calcium binding proteins includes grancalcin, peflin, sorcin, calpain large and small subunits as well as ALG-2. Systematic testing of the heterodimerization abilities of the PEF proteins using the yeast two-hybrid and glutathione S-transferase pull-down assays revealed the new finding that grancalcin interacts strongly with sorcin. In addition, sorcin and grancalcin can be co-immunoprecipitated from lysates of human umbilical vein endothelial cells. Our results indicate that heterodimerization, in addition to differential interactions with target proteins, might be a way to regulate and fine tune processes mediated by calcium binding proteins of the penta-EF hand type.
...
PMID:The PEF family proteins sorcin and grancalcin interact in vivo and in vitro. 1280 66

Grancalcin is a protein specifically expressed in neutrophils and monocytes/macrophages. The function of grancalcin has not been identified. Grancalcin-deficient neutrophils were previously demonstrated to exert normal recruitment to the inflamed site, NADPH oxidase activation, extracellular release of secondary granules, apoptosis and activation-induced Ca2+ flux. In this study we analyzed granule numbers in resting and activated grancalcin-deficient neutrophils, their phagocytic activity and adherence to extracellular matrix proteins. Results revealed normal phagocytosis and degranulation of grancalcin-deficient neutrophils, while their adhesion to fibronectin was decreased by 60%. Consistently, the processes associated with neutrophil adhesion, such as formation of focal adhesion complexes and spreading, were also impaired in grancalcin-deficient neutrophils by 89 and 38%, respectively. In contrast, adherence to other extracellular matrix proteins: collagen, laminin and vitronectin, was not significantly altered. We thus report for the first time a function of grancalcin.
...
PMID:The role of grancalcin in adhesion of neutrophils. 1693 89

Microvesicles (MVs), or microparticles, are a complex, dynamic and functional part of cells. Red blood cell (RBC)-derived MVs are naturally produced in vivo (during normal aging processes or in several diseases) as well as ex vivo during cold storage of RBCs, or in vitro by ATP depletion or treatment with Ca(2+) and calcium ionophore. All these MVs are equivalently classified according to their size and/or surface markers. Nevertheless, their content in proteins can differ and a few differences in terms of lipid raft proteins, notably stomatin and flotillin-2, have been reported. Based on two-dimensional gel electrophoreses, the present study highlights the differences between MVs induced during storage of RBCs (storage-MVs) and MVs stimulated by Ca(2+) entry (Ca-MVs). Upon treatment, Ca-MVs are formed following a clear recruitment of Ca(2+)-binding proteins (sorcin, grancalcin, PDCD6) and particularly annexins (4 and 5). Therefore, it emerges that different molecular pathways are available to produce similar MVs by disturbing the membrane/cytoskeleton interactions. Interestingly, these differences provide non-negligible pieces of information on the parent cells, and the mechanisms and modes of actions involved in the formation of MVs. In addition to biophysical characterization, protein analysis is important to classify these cellular corpuscles and evaluate their potential impacts in diseases or transfusion medicine.
...
PMID:Differences between calcium-stimulated and storage-induced erythrocyte-derived microvesicles. 2654 71

The EF-hand is a helix-loop-helix motif observed mainly in intracellular calcium binding proteins. The EF-hand usually occurs as a pair, EF-lobe, which is a unit of evolution and structure. Penta EF-hand (PEF) proteins form a unique group including calpain, sorcin, grancalcin, ALG-2, and peflin. The fifth EF-hand of PEF proteins makes a pair with that of another PEF protein. The members of PEF family have diverse functions and their evolution is complex. The interaction of PEF proteins with target occurs at several sites. Here, we analyzed the ancestral sequences of each group of PEF proteins and determined the interfaces for the specific and selective interaction to the target among several PEF proteins. The shape of the groove for interaction at common site is different among PEF proteins. We found that the changes at limited sites induced the divergence of interaction sites that determines the selectivity of targets. The residues involved the changes at limited sites are important for the drug design selective to each PEF protein.
...
PMID:Interaction sites of PEF proteins for recognition of their targets. 3102 15