Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Pivot Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Target Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Query: CAS:72-19-5 (
threonine
)
43,736
document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)
We explored whether the delay that occurs between a rise in plasma insulin and the increase of glucose disposal occurs before, at, or downstream of steps that are believed to be part of the insulin signaling cascade. Skeletal muscle biopsies were obtained from 16 nondiabetic subjects before, and 20 and 180 min after plasma insulin levels had been augmented in euglycemic hyperinsulinemic glucose clamps. Although plasma insulin had reached 98% of its final concentration within 10 min, insulin receptor kinase (IRK) activity, p85 associated with insulin receptor substrate-1 (IRS-1), IRS-1-associated phosphatidylinositol 3-kinase (PI3K) activity, and
Thr
(308)-protein kinase B (PKB) phosphorylation in the muscle biopsies at 20 min had reached only 60, 48, 34 and 47% respectively of those at 180 min. This suggests a delay before the level of IRK and little or no delay between IRK and PKB activation. The observation that
glycogen synthase
activity and glucose disposal at 20 min had both only reached 25% of the respective values at 180 min suggests an additional delay downstream of the investigated signaling steps.
...
PMID:Delays in insulin signaling towards glucose disposal in human skeletal muscle. 1187 13
Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase that is involved in multiple cellular signaling pathways, including the Wnt signaling cascade where it phosphorylates beta-catenin, thus targeting it for proteasome-mediated degradation. Unlike phosphorylation of
glycogen synthase
, phosphorylation of beta-catenin by GSK-3 does not require priming in vitro, i.e. it is not dependent on the presence of a phosphoserine, four residues C-terminal to the GSK-3 phosphorylation site. Recently, a means of dissecting GSK-3 activity toward primed and non-primed substrates has been made possible by identification of the R96A mutant of GSK-3beta. This mutant is unable to phosphorylate primed but can still phosphorylate unprimed substrates (Frame, S., Cohen, P., and Biondi R. M. (2001) Mol. Cell 7, 1321-1327). Here we have investigated whether phosphorylation of Ser(33), Ser(37), and
Thr
(41) in beta-catenin requires priming through prior phosphorylation at Ser(45) in intact cells. We have shown that the Arg(96) mutant does not induce beta-catenin degradation but instead stabilizes beta-catenin, indicating that it is unable to phosphorylate beta-catenin in intact cells. Furthermore, if Ser(45) in beta-catenin is mutated to Ala, beta-catenin is markedly stabilized, and phosphorylation of Ser(33), Ser(37), and
Thr
(41) in beta-catenin by wild type GSK-3beta is prevented in intact cells. In addition, we have shown that the L128A mutant, which is deficient in phosphorylating Axin in vitro, is still able to phosphorylate beta-catenin in intact cells although it has reduced activity. Mutation of Tyr(216) to Phe markedly reduces the ability of GSK-3beta to phosphorylate and down-regulate beta-catenin. In conclusion, we have found that the Arg(96) mutant has a dominant-negative effect on GSK-3beta-dependent phosphorylation of beta-catenin and that targeting of beta-catenin for degradation requires prior priming through phosphorylation of Ser(45).
...
PMID:Expression and characterization of GSK-3 mutants and their effect on beta-catenin phosphorylation in intact cells. 1196 63
MAPK-activated protein kinase 2 (MAPKAPK2), one of several kinases directly phosphorylated and activated by p38 MAPK, plays a central role in the inflammatory response. The activated MAPKAPK2 phosphorylates its nuclear targets CREB/ATF1, serum response factor, and E2A protein E47 and its cytoplasmic targets HSP25/27, LSP-1, 5-lipoxygenase,
glycogen synthase
, and tyrosine hydroxylase. The crystal structure of unphosphorylated MAPKAPK2, determined at 2.8 A resolution, includes the kinase domain and the C-terminal regulatory domain. Although the protein is inactive, the kinase domain adopts an active conformation with aspartate 366 mimicking the missing phosphorylated
threonine
222 in the activation loop. The C-terminal regulatory domain forms a helix-turn-helix plus a long strand. Phosphorylation of
threonine
334, which is located between the kinase domain and the C-terminal regulatory domain, may serve as a switch for MAPKAPK2 nuclear import and export. Phosphorylated MAPKAPK2 masks the nuclear localization signal at its C terminus by binding to p38. It unmasks the nuclear export signal, which is part of the second C-terminal helix packed along the surface of kinase domain C-lobe, and thereby carries p38 to the cytoplasm.
...
PMID:Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. 1217 11
The present study determined whether putative phosphorylation sites within the M3/M4 cytoplasmic domain of the human alpha4 subunit of alpha4beta2 neuronal nicotinic receptors are substrates for cAMP-dependent protein kinase (PKA) or protein kinase C (PKC). Five peptides corresponding to predicted phosphorylation sequences were synthesized, and phosphorylation was compared with standard peptide substrates for each kinase, that is, Kemptide for PKA and
glycogen synthase
(GS) 1-8 for PKC. VRCRSRSI had the highest affinity for PKA, with a Km of 44.5 microM; Kemptide had a Km of 7.7 microM. LMKRPSVVK and KARSLSVQH were also phosphorylated by PKA, but had lower affinities of 593 microM and 2896 microM, respectively. LMKRPSVVK had the highest affinity for PKC with a Km of 182 microM; GS 1-8 had a Km of 2.1 microM. VRCRSRSI had a comparative affinity for PKC with a Km of 327 microM. PCKCTCKK was not phosphorylated by PKA, but was a substrate for PKC with a Km of 1392 microM, whereas PGPSCKSP was not phosphorylated by either kinase. Based on these findings, results suggest that Ser-362 and Ser-486 on the human alpha4 subunit may be phosphorylated by either PKA or PKC, Ser-467 is a putative PKA site, and
Thr
-532 represents a likely PKC substrate; Ser-421 does not appear to be phosphorylated by either kinase.
...
PMID:Phosphorylation sites within alpha4 subunits of alpha4beta2 neuronal nicotinic receptors: a comparison of substrate specificities for cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). 1267 27
We have shown previously that mice with a targeted disruption in the stearoyl-CoA desaturase 1 gene (SCD1-/-) have increased insulin sensitivity compared with control mice. Here we show that the SCD1-/- mice have increased insulin signaling in muscle. The basal tyrosine phosphorylation of the insulin receptor and insulin receptor substrates 1 and 2 are elevated. The tyrosine phosphorylation of insulin-like growth factor-1 receptor was similar between SCD1+/+ and SCD1-/- mice. The association of insulin receptor substrates 1 and 2 with alphap85 subunit of phosphatidylinositol 3-kinase as well as the phosphorylation of Akt-Ser-473 and Akt-
Thr
-308 are also elevated in the SCD1-/- mice. Interestingly, the mRNA levels, protein mass, and activity of the protein-tyrosine phosphatase-1B implicated in the attenuation of the insulin signal are reduced in the SCD1-/- mice, whereas the levels of the leukocyte antigen-related protein phosphatase are similar between two groups of mice. The content of glucose transporter 4 in the plasma membrane and basal as well as insulin-mediated glucose uptake are increased in the SCD1-/- mice. In addition, the muscle glycogen content and the activities of
glycogen synthase
and phosphorylase are increased in the SCD1-/- mice. We hypothesize that loss of SCD1 function induces increased insulin signaling at least in part by a reduction in the expression of protein-tyrosine phosphatase 1B. SCD1 could be a therapeutic target in the treatment of diabetes.
...
PMID:Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B in muscle. 1296 Mar 77
Nonenzymatic glycation is increased in diabetes and leads to increased levels of glycated proteins. Most studies have focused on the role of glycation products in vascular complications. Here, we have investigated the action of human glycated albumin (HGA) on insulin signaling in L6 skeletal muscle cells. Exposure of these cells to HGA inhibited insulin-stimulated glucose uptake and
glycogen synthase
activity by 95 and 80%, respectively. These effects were time- and dose-dependent, reaching a maximum after 12 h incubation with 0.1 mg/ml HGA. In contrast, exposure of the cells to HGA had no effect on thymidine incorporation. Further, HGA reduced insulin-stimulated serine phosphorylation of PKB and GSK3, but did not alter ERK1/2 activation. HGA did not affect either insulin receptor kinase activity or insulin-induced Shc phosphorylation on tyrosine. In contrast, insulin-dependent IRS-1 and IRS-2 tyrosine phosphorylation was severely reduced in cells preincubated with HGA for 24 h. Insulin-stimulated association of PI3K with IRS-1 and IRS-2, and PI3K activity were reduced by HGA in parallel with the changes in IRS tyrosine phosphorylation, while Grb2-IRS association was unchanged. In L6 myotubes, exposure to HGA increased PKC activity by 2-fold resulting in a similar increase in Ser/
Thr
phosphorylation of IRS-1 and IRS-2. These phosphorylations were blocked by the PKC inhibitor bisindolylmaleimide (BDM). BDM also blocked the action of HGA on insulin-stimulated PKB and GSK3 alpha. Simultaneously, BDM rescued insulin-stimulation of glucose uptake and
glycogen synthase
activity in cells exposed to HGA. The use of antibodies specific to PKC isoforms shows that this effect appears to be mediated by activated PKC alpha, independent of reactive oxygen species production. In summary, in L6 skeletal muscle cells, exposure to HGA leads to insulin resistance selectively in glucose metabolism with no effect on growth-related pathways regulated by the hormone.
...
PMID:Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanism. 1297 Mar 60
A protein-trap screen using the Drosophila neuromuscular junction (NMJ) as a model synapse was performed to identify genes that control synaptic structure or plasticity. We found that Shaggy (Sgg), the Drosophila homolog of the mammalian
glycogen synthase
kinases 3 alpha and beta, two serine-
threonine
kinases, was concentrated at this synapse. Using various combinations of mutant alleles of shaggy, we found that Shaggy negatively controlled the NMJ growth. Moreover, tissue-specific expression of a dominant-negative Sgg indicated that this kinase is required in the motoneuron, but not in the muscle, to control NMJ growth. Finally, we show that Sgg controlled the microtubule cytoskeleton dynamics in the motoneuron and that Futsch, a microtubule-associated protein, was required for Shaggy function on synaptic growth.
...
PMID:Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. 1526 69
Stearoyl-CoA desaturase (SCD) catalyzes the synthesis of oleate (C18:1) and palmitoleate (C16:1), which are the main monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters, and cholesterol esters. Previously, we showed that SCD1 deficiency elevates insulin-signaling components and downregulates protein-tyrosine phosphatase-1B (PTP-1B) in muscle, a major insulin-sensitive tissue. Here we found that, in brown adipose tissue (BAT), another insulin-sensitive tissue, the basal tyrosine phosphorylations of insulin receptor (IR) and IR substrates (IRS-1 and IRS-2) were upregulated in SCD1(-/-) mice compared with wild-type mice. The association of IRS-1 and IRS-2 with the alpha-p85 subunit of phosphatidylinositol 3-kinase as well as Akt-Ser(473) and Akt-
Thr
(308) phosphorylation is also elevated in the SCD1(-/-) mice. The mRNA expression, protein levels, and activity of PTP-1B implicated in the attenuation of the insulin signal are reduced in the SCD1(-/-) mice. The content of GLUT4 in the plasma membrane increased 2.5-fold, and this was accompanied by a 6-fold increase in glucose uptake in BAT of SCD1(-/-) mice. The increased glucose uptake was associated with higher
glycogen synthase
activity and glycogen accumulation. In the presence of insulin, [U-(14)C]glucose incorporation into glycogen was increased in BAT of SCD1(-/-) mice. Taken together, these studies illustrate increased insulin signaling and increased glycogen metabolism in BAT of SCD1(-/-) mice.
...
PMID:Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue. 1549 11
In L6 myoblasts, insulin receptors with deletion of the C-terminal 43 amino acids (IR(Delta43)) exhibited normal autophosphorylation and IRS-1/2 tyrosine phosphorylation. The L6 cells expressing IR(Delta43) (L6(IRDelta43)) also showed no insulin effect on glucose uptake and
glycogen synthase
, accompanied by a >80% decrease in insulin induction of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) activity and tyrosine phosphorylation and of protein kinase B (PKB) phosphorylation at
Thr
(308). Insulin induced the phosphatidylinositol 3 kinase-dependent coprecipitation of PDK-1 with wild-type IR (IR(WT)), but not IR(Delta43). Based on overlay blotting, PDK-1 directly bound IR(WT), but not IR(Delta43). Insulin-activated IR(WT), and not IR(Delta43), phosphorylated PDK-1 at tyrosines 9, 373, and 376. The IR C-terminal 43-amino-acid peptide (C-terminal peptide) inhibited in vitro PDK-1 tyrosine phosphorylation by the IR. Tyr-->Phe substitution prevented this inhibitory action. In the L6(hIR) cells, the C-terminal peptide coprecipitated with PDK-1 in an insulin-stimulated fashion. This peptide simultaneously impaired the insulin effect on PDK-1 coprecipitation with IR(WT), on PDK-1 tyrosine phosphorylation, on PKB phosphorylation at
Thr
(308), and on glucose uptake. Upon insulin exposure, PDK-1 membrane persistence was significantly reduced in L6(IRDelta43) compared to control cells. In L6 cells expressing IR(WT), the C-terminal peptide also impaired insulin-dependent PDK-1 membrane persistence. Thus, PDK-1 directly binds to the insulin receptor, followed by PDK-1 activation and insulin metabolic effects.
...
PMID:Tyrosine phosphorylation of phosphoinositide-dependent kinase 1 by the insulin receptor is necessary for insulin metabolic signaling. 1631 5
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt
Thr
(308) or basal and contraction-stimulated glycogen synthase kinase-3beta (GSK-3beta) Ser(9) phosphorylation,
glycogen synthase
phosphorylation, or
glycogen synthase
activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop
Thr
(308) phosphorylation and GSK-3alpha Ser(21) phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3alpha Ser(21) phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.
...
PMID:Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle. 1680 55
<< Previous
1
2
3
4
5
6
7
8
Next >>