Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Pivot Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Target Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Query: CAS:72-19-5 (
threonine
)
43,736
document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)
A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated
glycogen synthase
at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of
glycogen synthase
. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first
threonine
residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates.
...
PMID:MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. 132 54
We have isolated cDNA molecules encoding a protein with the characteristic sequence elements that are conserved between the catalytic domains of protein kinases. This protein is apparently a serine/threonine kinase and is most closely related to the amino-terminal half of the ribosomal protein S6 kinase II first characterized in Xenopus eggs (42% overall identity and 56% identity in the predicted catalytic domain). However, it clearly differs from S6 kinase II in that it has only one, rather than two predicted catalytic domains and a deduced molecular mass of 59,109 Da. We propose that is may be more related to, or identical, with, the mitogen-inducible S6 kinase of molecular mass 65-70 kDa described in mammalian liver, mouse 3T3 cells and chicken embryos. Remarkable structural features of the cDNA-encoded polypeptide are a section rich in proline, serine and
threonine
residues that resemble the multiphosphorylation domains of
glycogen synthase
and phosphorylase kinase alpha subunit, and a characteristic tyrosine residue in the putative nucleotide-binding glycine cluster which, by analogy to cdc2 kinase, is a potential tyrosine phosphorylation site.
...
PMID:cDNA encoding a 59 kDa homolog of ribosomal protein S6 kinase from rabbit liver. 169 10
Phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase has been shown to enhance subsequent phosphorylation by casein kinase I (Flotow, H., and Roach, P. J. (1989) J. Biol. Chem. 264, 9126-9128). In the present study, synthetic peptides based on the sequences of the four phosphorylated regions in muscle glycogen synthase were used to probe the role of substrate phosphorylation in casein kinase I action. With all four peptides, prior phosphorylation significantly stimulated phosphorylation by casein kinase I. A series of peptides was synthesized based on the NH2-terminal
glycogen synthase
sequence PLSRTLS7VSS10LPGL, in which phosphorylation at Ser7 is required for modification of Ser10 by casein kinase I. The spacing between the P-Ser and the acceptor Ser was varied to have 1, 2, or 3 intervening residues. The peptide with a 2-residue spacing (-S(P)-X-X-S-) was by far the best casein kinase I substrate. When the P-Ser residue at Ser7 was replaced with P-
Thr
, the resulting peptide was still a casein kinase I substrate. However, substitution of Asp or Glu residues at Ser7 led to peptides that were not phosphorylated by casein kinase I. Phosphorylation of one of the other peptides showed that
Thr
could also be the phosphate acceptor. From these results, we propose that there are substrates for casein kinase I for which prior phosphorylation is a critical determinant of protein kinase action. In these instances, an important recognition motif for casein kinase I appears to be -S(P)/T(P)-Xn-S/T- with n = 2 much more effective than n = 1 or n = 3. Thus, casein kinase I may be involved in hierarchal substrate phosphorylation schemes in which its activity is controlled by the phosphorylation state of its substrates.
...
PMID:Phosphate groups as substrate determinants for casein kinase I action. 211 8
Growth factor activation of serine/
threonine
protein kinases was studied by treating quiescent Swiss 3T3 cells with epidermal growth factor (EGF) and examining cytosolic extracts for protein kinase activity under conditions inhibitory to calcium- and cyclic nucleotide-dependent kinases. Cytosolic extracts of cells stimulated for 5 min were fractionated by Mono Q fast protein liquid chromatography. Eight peaks of kinase activity were resolved, of which five were stimulated by EGF treatment of cells. These peaks were revealed using the synthetic peptide Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala (S6 peptide), 40 S ribosomal S6 protein,
glycogen synthase
, microtubule-associated protein 2, and myelin basic protein as substrates. The peaks varied in the kinetics of their activation by EGF and in their response to insulin. Selected peaks were resolved further by sizing gel chromatography. The results together indicate that at least seven distinct fractions of cytosolic kinase activities are stimulated in Swiss 3T3 cells by EGF. One of these, which phosphorylates both S6 protein and S6 peptide, is similar to the S6 kinase characterized previously in this cell line by others. Four additional activities that also phosphorylate the S6 protein and S6 peptide appear unrelated to this enzyme. Finally, two kinase activities that phosphorylate both myelin basic protein and microtubule associated protein 2 are EGF stimulated. One is similar to an insulin-stimulated microtubule-associated protein 2 kinase described in other cell lines whereas the other seems to represent a novel activity. Several of these EGF-stimulated activities were inactivated by protein phosphatases, suggesting that they might be regulated by phosphorylation.
...
PMID:Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells. 214 53
Multifunctional protein kinase (MFPK) phosphorylates ATP-citrate lyase on peptide B on two sites, BT and BS, on
threonine
and serine, respectively, inhibitor 2 on a threonyl residue, and
glycogen synthase
at sites 2 and 3. The phosphorylation sites BT and BS of ATP-citrate lyase are dependent on prior phosphorylation at site A whereas site A phosphorylation is decreased by prior phosphorylation at sites BT and BS. To study the MFPK recognition sites and the site-site interactions, the amino acid sequences of ATP-citrate lyase peptide B and inhibitor 2 were determined and compared to each other and to
glycogen synthase
sites 3-5. The sequence of the tryptic peptide containing the two phosphorylation sites of peptide B is -Phe-Leu-Leu-Asn-Ala-Ser-Gly-Ser-
Thr
-Ser-
Thr
(P)-Pro-Ala-Pro-Ser(P)-Arg-, and the sequence of the MFPK phosphorylation site of inhibitor 2 is -Ile-Asp-Glu-Pro-Ser-
Thr
(P)-Pro-Tyr-. This inhibitor 2 site is identical with the site phosphorylated by glycogen synthase kinase 3/FA. These results suggest that at least some of the sites phosphorylated by MFPK (BT of ATP-citrate lyase,
Thr
72 of inhibitor 2, and sites 3b and 4 of
glycogen synthase
) contain a Ser/
Thr
flanked by a carboxyl-terminal proline. However, as MFPK did not phosphorylate a series of peptides containing the -X-
Thr
/Ser-Pro-X- sequence, this minimum consensus sequence is not sufficient for phosphorylation by MFPK.(ABSTRACT TRUNCATED AT 250 WORDS)
...
PMID:Sequence of sites on ATP-citrate lyase and phosphatase inhibitor 2 phosphorylated by multifunctional protein kinase (a glycogen synthase kinase 3 like kinase). 217 22
Triton X-100-solubilized high-density microsomes from insulin-treated rat adipocytes exhibit a marked increase in serine/
threonine
and tyrosine kinase activities toward exogenous histone when compared to controls. The insulin-dependent activation of microsomal histone kinase activities occurs within the physiological range of hormone concentrations (ED50 = 0.6 nM). The hormone-enhanced histone phosphorylation by the high-density microsomes appears to be catalyzed by two distinct kinases, based on their differential interaction with wheat germ agglutinin-agarose. The insulin-sensitive serine/threonine kinase is not retained by The insulin-sensitive serine/threonine kinase is not retained by the lectin column, whereas the tyrosine kinase appears to be a glycoprotein as evidenced by its adsorption to the immobilized lectin. The insulin-stimulated serine/threonine kinase exhibits preferential phosphorylation of histone and Kemptide (synthetic Leu-Arg-Arg-Ala-Ser-Leu-Gly) compared to a number of other peptide substrates. The substrate specificity of this serine/threonine kinase shows that it is distinct from the kinases that phosphorylate ribosomal protein S6, casein, phosvitin, ATP citrate lyase, and
glycogen synthase
and from multifunctional calmodulin-dependent, cAMP- and cGMP-dependent, and Ca2+/phospholipid-dependent protein kinases. Furthermore, 22% of the insulin-sensitive serine/threonine kinase activity can be adsorbed by monoclonal anti-phosphotyrosine antibodies immobilized on agarose. Its adsorption is specifically inhibited by excess free phosphotyrosine but not phosphoserine or phosphothreonine. The data suggest that this insulin-stimulated serine/threonine kinase in adipocyte high-density microsomes is tyrosine-phosphorylated, consistent with the hypothesis that the stimulatory action of insulin on this kinase may be mediated by tyrosine phosphorylation.
...
PMID:Insulin stimulates a membrane-bound serine kinase that may be phosphorylated on tyrosine. 243 90
Infection of Escherichia coli with phage lambda gt10 resulted in the appearance of a protein phosphatase with activity towards 32P-labelled casein. Activity reached a maximum near the point of cell lysis and declined thereafter. The phosphatase was stimulated 30-fold by Mn2+, while Mg2+ and Ca2+ were much less effective. Activity was unaffected by inhibitors 1 and 2, okadaic acid, calmodulin and trifluoperazine, distinguishing it from the major serine/
threonine
-specific protein phosphatases of eukaryotic cells. The lambda phosphatase was also capable of dephosphorylating other substrates in the presence of Mn2+, although activity towards 32P-labelled phosphorylase was 10-fold lower, and activity towards phosphorylase kinase and
glycogen synthase
25 50-fold lower than with casein. No casein phosphatase activity was present in either uninfected cells, or in E. coli infected with phage lambda gt11. Since lambda gt11 lacks part of the open reading frame (orf) 221, previously shown to encode a protein with sequence similarity to protein phosphatase-1 and protein phosphatase-2A of mammalian cells [Cohen, Collins, Coulson, Berndt & da Cruz e Silva (1988) Gene 69, 131-134], the results indicate that ORF221 is the protein phosphatase detected in cells infected with lambda gt10. Comparison of the sequence of ORF221 with other mammalian protein phosphatases defines three highly conserved regions which are likely to be essential for function. The first of these is deleted in lambda gt11.
...
PMID:Discovery of a protein phosphatase activity encoded in the genome of bacteriophage lambda. Probable identity with open reading frame 221. 254 89
Four major serine/
threonine
-specific protein phosphatase catalytic subunits are present in the cytoplasm of animal cells. Three of these enzymes, PP-1, PP-2A, and PP-2B, are members of the same gene family, while PP-2C appears to be distinct. PP-1, PP-2A, and PP-2B are complexed to other subunits in vivo, whereas PP-2C has only been isolated as a monomeric protein. PP-1, PP-2A, and PP-2C have broad and overlapping specificities in vitro, and account for virtually all measurable activity in tissue extracts toward a variety of phosphoproteins that regulate metabolism, muscle contractility, and other processes. Their precise functions in vivo are unknown, although important clues to the physiological roles of PP-1 and PP-2A are provided by the effects of okadaic acid and by the subcellular localization of PP-1. The active forms of PP-1 are largely particulate, and their association with subcellular structures is mediated by "targetting subunits" that direct PP-1 to particular locations, enhance its activity toward certain substrates, and confer important regulatory properties upon it. This concept is best established for the glycogen-bound enzymes in skeletal muscle and liver (PP-1G) and the myofibrillar form (PP-1M) in skeletal muscle. The activities of PP-1 and PP-2B are controlled by the second messengers cyclic AMP and calcium. The activity of PP-2B is dependent on calcium and calmodulin, while PP-1 is controlled in a variety of ways that depend on the form of the enzyme and the tissue. PP-1 can be inhibited by cyclic AMP in a variety of cells through the A-kinase-catalyzed phosphorylation of inhibitor-1 and its isoforms. Phosphorylation of the glycogen-binding subunit of PP-1G by A-kinase promotes translocation of the catalytic subunit from glycogen particles to cytosol in skeletal muscle, inhibiting the dephosphorylation of glycogen-metabolizing enzymes. Allosteric inhibition of hepatic PP-1G by phosphorylase a occurs in response to signals that elevate cyclic AMP or calcium, and prevents the activation of
glycogen synthase
in liver. PP-1 can also be activated indirectly by calcium through the ability of PP-2B to dephosphorylate inhibitor-1. This control mechanism may operate in dopaminoceptive neurones of the brain and other cells. The inactive cytosolic form of PP-1 (PP-1I) can be activated in vitro through the glycogen synthase kinase-3-catalyzed phosphorylation of its inhibitory subunit (inhibitor-2), but the physiological significance is unclear.(ABSTRACT TRUNCATED AT 400 WORDS)
...
PMID:The structure and regulation of protein phosphatases. 254 56
During investigations of the regulation of tyrosine hydroxylase (TH) by protein phosphorylation, a novel protein kinase activity has been discovered in rat pheochromocytoma. Originally detected as a trace contaminant in preparations of highly purified TH, this novel kinase activity phosphorylated TH at serine 8 in the proline-rich amino-terminal region of the enzyme. This particular site is not phosphorylated by, nor is the amino acid sequence surrounding this site selective for, any of the classical (i.e. well characterized) protein kinases. In this report, we describe the identification, characterization, and partial purification of this novel protein kinase. By utilizing a synthetic peptide corresponding to the amino-terminal region of TH, a selective assay for this protein kinase was developed. The kinase activity utilized ATP and magnesium, although GTP could also be utilized as a phosphate donor. The kinase activity was found to co-purify with TH activity through ammonium sulfate precipitation and DEAE-cellulose chromatography and could be only partially resolved from TH by heparin-agarose affinity chromatography. Substantial kinase activity could be resolved from TH by phosphocellulose chromatography. The novel kinase migrates as a protein with a molecular mass of approximately 45 kDa on gel permeation chromatography as well as sucrose density gradient centrifugation. Studies of site specificity indicate that this Ser/
Thr
kinase activity appears to be directed by an adjacent (carboxyl-terminal) proline residue, exhibiting a minimal recognition sequence of -X-Ser/
Thr
-Pro-X-. In addition to TH, this proline-directed protein kinase will also phosphorylate synapsin I, histone H1, and
glycogen synthase
, suggesting that this kinase may have multiple substrates in vivo. Additional findings indicate that the activity of proline-directed protein kinase is increased transiently in PC12 pheochromocytoma cells following treatment with nerve growth factor. Distinctions between this novel kinase and other well characterized protein kinases can be made on the basis of phosphorylation site specificity, chromatographic behavior, and physical characteristics.
...
PMID:Identification of a novel proline-directed serine/threonine protein kinase in rat pheochromocytoma. 257 Jul 79
32P-labeled
glycogen synthase
specifically immunoprecipitated from 32P-phosphate incubated rat hepatocytes contains, in addition to [32P] phosphoserine, significant levels of [32P] phosphothreonine (7% of the total [32P] phosphoaminoacids). When the 32P-immunoprecipitate was cleaved with CNBr, the [32P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 "in vitro" (casein kinases I and II, cAMP-dependent protein kinase and glycogen synthase kinase-3). After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on
threonine
and 32P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at
threonine
site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the "in vivo" phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate
threonine
residues in liver glycogen synthase.
...
PMID:Threonine phosphorylation of rat liver glycogen synthase. 299 12
1
2
3
4
5
6
7
8
Next >>