Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: CAS:6893-26-1 (glutamate)
73,096 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

In a previous study we noted that the release of D-[3H]aspartate evoked by non-N-methyl-D-aspartate (non-NMDA) receptor agonists in cultured rat cerebellar granule cells was enhanced in the absence of extracellular Na+. To explain this apparent paradox, we tried in the present investigation to correlate the effect of Na+ removal on the kainate (KA)- and quisqualate (QA)-induced D-[3H]aspartate release with that on KA- and QA-induced 45Ca2+ accumulation. The releasing activity of KA, which was only partially Ca2+ dependent in the presence of Na+, became totally Ca2+ dependent in its absence. Moreover, the releasing activity of QA, which was Ca2+ independent in the presence of Na+, became 50% Ca2+ dependent in the absence of the monovalent cation. The releasing action of both agonists was in all cases antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and that induced by KA was also sensitive to kynurenic acid. When glutamate was tested as an agonist in the presence of Na+, it was found that its D-[3H]aspartate releasing action was Ca2+ independent and was largely due to heteroexchange. The evoked release was Ca2+ independent, scarcely sensitive to CNQX, and insensitive to NMDA antagonists. In Na(+)-free medium, the glutamate-evoked D-[3H]aspartate release was lower (due to the abolishment of heteroexchange), but was totally Ca2+ dependent and antagonized by CNQX and kynurenate. KA (30 microM-1 mM) stimulated the accumulation of 45Ca2+ in a dose-dependent and CNQX-sensitive way, the effect being progressively higher as the Na+ concentration in the medium was decreased. Li+ affected KA-induced 45Ca2+ accumulation in a way similar to Na+, although 45Ca2+ uptake was somewhat lower in Li(+)-containing medium. The voltage-activated calcium channel antagonists La3+ and (-)-202-791 caused only a limited inhibition of the KA-induced 45Ca2+ influx both in the presence and in the absence of Na+. Under all the conditions tested [presence and absence of Na+ and of (-)-202-791], the kainate-induced 45Ca2+ uptake was scarcely sensitive to the NMDA antagonist 2-amino-5-phosphonovalerate. QA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid also stimulated 45Ca2+ influx in a CNQX-sensitive way, the effect being enhanced in Na(+)-free media. These agonists were, however, less effective than KA.(ABSTRACT TRUNCATED AT 400 WORDS)
...
PMID:Depression by sodium ions of calcium uptake mediated by non-N-methyl-D-aspartate receptors in cultured cerebellar neurons and correlation with evoked D-[3H]aspartate release. 134 37

Electrophysiological techniques and Xenopus oocytes were used to study the expression of neurotransmitter receptors encoded by mRNAs isolated from three human glioma cell lines. Oocytes injected with mRNAs from two glioblastoma cell lines did not show electrical responses to the various neurotransmitters tested. In contrast, oocytes injected with mRNA from an astrocytoma cell line (R-111) acquired acetylcholine and glutamate receptors as well as a small number of N-methyl-D-aspartate (NMDA) receptors. Acetylcholine elicited oscillatory Cl- currents that were abolished by muscarinic antagonists. The muscarinic receptors are coupled to the inositol phosphate-Ca2+ receptor-channel coupling system. Glutamate and its analogs kainate, quisqualate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid induced smooth currents. The non-NMDA responses were potently blocked by 6,7-dinitroquinoxaline-2,3 dione. Our results show that human astrocytoma cells contain mRNAs coding for functional acetylcholine and glutamate receptors that have properties similar to those of neurons. In contrast, human glioblastoma cells lacked those mRNAs. These differences might be useful for the development of new diagnostic and therapeutic procedures.
...
PMID:mRNA coding for neurotransmitter receptors in a human astrocytoma. 134 61

Following microinjection into the nucleus tractus solitarius (NTS), the effects of glutamate on the baroreceptor reflex are poorly antagonized by kynurenic acid and DL-2-amino-5-phosphonovaleric acid, suggesting the possible involvement of metabotropic glutamate receptors in this response. The metabotropic glutamate receptor agonist 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) depolarized neurons located medial to the tractus solitarius (TS) at the level of the area postrema in coronal sections of the rat NTS. This effect was mimicked by glutamate and was not blocked by antagonists at alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)/kainate or NMDA receptors. 1S,3R-ACPD also produced an inward current under voltage clamp that was not accompanied by a rise in [Ca2+]i, monitored with the Ca(2+)-sensitive dye fura-2. Conversely, the muscarinic agonist carbachol produced an outward current and a rise in [Ca2+]i. 1S,3R-ACPD reduced both the excitatory and the inhibitory postsynaptic current resulting from single electrical stimuli in the region of the TS. High-frequency stimulation of the TS produced an inward current in the presence of AMPA/kainate and NMDA receptor blockers. This current had similar properties to that produced by 1S,3R-ACPD. Thus, metabotropic glutamate receptors may mediate a component of excitatory transmission in the NTS.
...
PMID:Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. 135 39

The ovarian steroids exert both long-term and short-term actions on neurons involving different cellular mechanisms. We have investigated the long-term and short-term effects of estrogen on the electrophysiological properties of CA1 neurons utilizing intracellular recordings in hippocampal slices prepared from ovariectomized female rats. An in vivo estrogen-priming paradigm was used to examine long-term genomic actions of estrogen. Subcutaneous estrogen injections 2 d prior to recording had no effect on the intrinsic membrane properties of CA1 neurons, but increased synaptic excitability by prolonging the EPSP and inducing repetitive firing in response to Schaffer collateral stimulation. Short-term effects of estrogen that presumedly involve direct membrane interactions were tested by application of steroids directly to the slice. Superfusion of 17 beta-estradiol, but not 17 alpha-estradiol, caused a rapid and reversible increase in the amplitude of the Schaffer collateral-activated EPSP. This potentiation of the EPSP by 17 beta-estradiol still occurred in the presence of the NMDA antagonist 2-amino-5-phosphonovalerate, but was blocked by the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Depolarizing responses to iontophoretic pulses of exogenous glutamate were also potentiated by 17 beta-estradiol, suggesting a post-synaptic site of action. In addition, 17 beta-estradiol potentiated the responses to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, kainate, and quisqualate, but not NMDA, further implicating non-NMDA receptors in the short-term action of estrogen. In contrast, 17 beta-estradiol had no effect on responses to exogenous GABA or on the Schaffer collateral-induced late IPSP.(ABSTRACT TRUNCATED AT 250 WORDS)
...
PMID:Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. 135 94

The properties of the excitatory postsynaptic potential evoked by focal stimulation and of the responses to excitatory amino acids were examined by intracellular recording from sympathetic preganglionic neurons in upper thoracic spinal cord slices of the adult cat. Single stimuli to the region dorsal to the intermedio-lateral nucleus evoked short-latency, presumably monosynaptic, excitatory postsynaptic potentials. The reversal potential of this response was -2.2 mV and became more negative when external Na+ or K+ concentration was decreased. The excitatory postsynaptic potential was depressed by the non-selective excitatory amino acid receptor antagonist cis-2,3-piperidine dicarboxylic acid and enhanced by a glutamate uptake inhibitor. The non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2.3-dione abolished the excitatory postsynaptic potential in 72% of neurons. In the remaining neurons, this antagonist only depressed the potential and unmasked a slower component which was abolished by the N-methyl-D-aspartate receptor antagonist D,L-2-amino-5-phosphonovaleric acid. In the presence of tetrodotoxin all neurons tested were depolarized by glutamate or aspartate, as well as by the selective agonists quisqualate, alpha-amino-3-hydroxy-5-methylisoxazole propionic acid, kainate and N-methyl-D-aspartate. The glutamate-evoked depolarization reversed at a membrane potential of -2.0 mV and at a more negative value when external Na+ or K+ concentration was decreased. The response to alpha-amino-3-hydroxy-5-methylisoxazole propionic acid was abolished by 6-cyano-7-nitroquinoxaline-2,3-dione in all neurons tested and that to kainate in only one-third of the cells. In the remainder the response to kainate was only slightly depressed by this antagonist. The responses to glutamate and aspartate were only slightly depressed by the combined action of the various amino acid receptor antagonists used. The responses to N-methyl-D-aspartate were abolished by D,L-2-amino-5-phosphonovaleric acid. The punched-out region of the intermedio-lateral nucleus, maintained in vitro, released glutamate and aspartate in the absence of stimulation. Field stimulation (20 Hz) enhanced release by between 40 and 100%. The increase was prevented by superfusion with calcium-free Krebs. It is concluded that excitatory amino acids, acting on both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors, but mainly on the latter, are likely mediators of the monosynaptic excitatory postsynaptic potential evoked in sympathetic preganglionic neurons by the stimulated region. The efflux data suggest that glutamate and aspartate are among the mediators.
...
PMID:Fast excitatory postsynaptic potentials and the responses to excitant amino acids of sympathetic preganglionic neurons in the slice of the cat spinal cord. 137 15

Excitatory synaptic transmission in the central nervous system (CNS) is mediated by three major classes of glutamate receptors, namely the ionotropic NMDA (N-Methyl-D-Aspartate) and KA/AMPA (kainate/alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid) receptors and the metabotropic receptor type. Among the ionotropic receptors, NMDA receptors are thought to mediate their physiological response mainly through the influx of extracellular calcium, while KA/AMPA receptor channels are mainly thought to carry the influx of monovalent cations. Recently, we have challenged this view by showing that cloned KA/AMPA receptor subunits GluR1 and GluR3 form ion channels which are permeable to calcium. We now directly demonstrate large increases in intracellular calcium concentrations induced by calcium fluxes through KA/AMPA receptor channels in solutions with physiological calcium concentrations. Calcium fluxes were observed through glutamate receptor channels composed of the subunits GluR1 and GluR3, which are both abundantly present in various types of central neurones. The calcium influx was fluorometrically monitored in Xenopus oocytes injected with the calcium indicator dye fura-2. Bath application of the membrane permeable analogue of adenosine cyclic monophosphate (cAMP) potentiated the current and also the flux of calcium through open KA/AMPA receptor channels. Further pharmacological experiments suggested that this effect was mediated by the activation of protein kinase A. Our results provide a molecular interpretation for the function of calcium permeable KA/AMPA receptor channels in neurones and identify two of the subunits of the KA/AMPA receptor channel which are regulated by the cAMP dependent second messenger system.
...
PMID:Calcium influx through subunits GluR1/GluR3 of kainate/AMPA receptor channels is regulated by cAMP dependent protein kinase. 137 54

L-glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Most cells are responsive to glutamate which activates cation channels with different pharmacological, kinetic, and ion permeability properties. These channels play important roles in neurotransmission, memory acquisition as well as acute and chronic disorders of the brain. The present report summarizes recent knowledge on AMPA (a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) receptors which mediate fast synaptic neurotransmission.
...
PMID:Glutamate-gated ion channels in the brain. Genetic mechanism for generating molecular and functional diversity. 137 26

The binding of (RS)-alpha-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), a selective ligand for non-N-methyl-D-aspartate excitatory amino acid receptors, was investigated in rat brain using an autoradiographic receptor binding technique. [3H]AMPA binding sites were widely distributed throughout the rat central nervous system, and the rank order of potency of displacers of [3H]AMPA binding was quisqualate greater than AMPA greater than 6,7-dinitroquinoxaline-2,3-dione = 6-cyano-7-nitroquinoxaline-2,3-dione greater than beta-N-oxalylamino-L-alanine greater than glutamate greater than kainate. Potassium thiocyanate (0-100 mM) exerted a 4-fold stimulation of [3H]AMPA binding, without changing the relative regional distribution of [3H]AMPA binding densities among rat brain regions. Scatchard analysis of equilibrium saturation binding revealed high affinity and low affinity components of [3H]AMPA binding, even in the absence of potassium thiocyanate. Addition of potassium thiocyanate increased the number of high affinity [3H]AMPA binding sites without a change in affinity. In addition, the number of low affinity [3H]AMPA binding sites was unchanged in the presence of potassium thiocyanate, but the affinity of low affinity [3H]AMPA binding was greatly increased. [3H]AMPA thus binds specifically to two affinity conformations of postsynaptic binding sites that appear to be interconverted with potassium thiocyanate. The pharmacologic profile of these sites is consistent with that of the ion channel-linked ("ionotropic") quisqualate/AMPA class of excitatory amino acid receptor in the rat central nervous system.
...
PMID:Multiple states of rat brain (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors as revealed by quantitative autoradiography. 137 15

The binding of alpha-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), a selective ligand for the ion channel-linked quisqualate receptor, was evaluated in Triton X-100-treated membranes of human cerebral cortex. The presence of chaotropic ions produced divergent effects on specific [3H]AMPA binding: A twofold increase in the binding was observed with thiocyanide at 100 mM, although iodide (100 mM) and perchlorate (100 mM) reduced the binding. Chemical modifications of the sulfhydryl group with p-chloromercuriphenylsulfonic acid (PCMBS) produced threefold increases in specific [3H]-AMPA binding in the absence of KSCN as well as in the presence of KSCN. Treatment with dithiothreitol restored the enhanced specific [3H]AMPA binding by PCMBS to the basal level. Although specific [3H]AMPA binding in the absence of KSCN showed a single site (KD = 220 nM, Bmax = 235 fmol/mg of protein), curvilinear Scatchard plots of specific [3H]AMPA binding in the presence of 100 mM KSCN can be resolved into two binding sites with the following parameters: KD1 = 5.82 nM, Bmax1 = 247 fmol/mg of protein; KD2 = 214 nM, Bmax2 = 424 fmol/mg of protein. Quisqualate and AMPA were the most potent inhibitors of the [3H]AMPA binding in the presence of KSCN. Potent inhibitors of the binding included beta-N-oxalylamino-L-alanine (L-BOAA), cysteine-S-sulfate, L-glutamate, 6-cyano-7-nitroquinoxaline-2,3-dione, and 6,7-dinitroquinoxaline-2,3-dione. Kainate, L-homocysteine sulfinic acid, and L-homocysteic acid were active with an IC50 value of a micromolar concentration, whereas L-cysteic acid and L-cysteine sulfinic acid were weakly active.(ABSTRACT TRUNCATED AT 250 WORDS)
...
PMID:Alpha-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid binding to human cerebral cortical membranes: minimal changes in postmortem brains of chronic schizophrenics. 137 31

The excitatory and excitotoxic actions of the endogenous excitatory amino acid (EAA) neurotransmitter, glutamate, are mediated by activation of three common subtypes of EAA receptors: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/quisqualate and kainate receptors. EAA neurotransmitter systems play a number of physiological roles in the regulation and organization of neural systems during development. However, excessive activation of this neurotransmitter system is also implicated in the pathophysiology of several forms of acute and chronic brain injury. In this study, the susceptibility of the developing rat brain to AMPA/quisqualate receptor mediated injury was examined at eight postnatal ages (1-90 days). The receptor agonists, AMPA (25 nmol) or quisqualate (100 nmol), were stereotaxically microinjected unilaterally into the anterior striatum. The severity of resulting brain injury was assessed 5 days later by comparison of reductions in regional cortical and striatal cross-sectional areas. Microinjection of AMPA (25 nmol) produced widespread unilateral forebrain injury in the intermediate postnatal period (days 5-28). The severity of injury resulting from microinjection of a fixed dose of AMPA (25 nmol) transiently exceeded the severity of injury in adults between PND 5-28 with peak sensitivity occurring near PND 10. At PND 1, microinjection of AMPA produced a 24.5 +/- 1.7% reduction in striatal cross-sectional area, which is similar to the response observed in adult animals, and the lesion was confined to the injection site. Susceptibility to AMPA toxicity increased 2-fold from PND 1 to PND 5. At PND 10, the age of maximal sensitivity, the excitotoxic reaction to AMPA extended throughout the entire cerebral hemisphere and the mean striatal cross-sectional area was reduced by 81.7 +/- 3.9%. With advancing postnatal age, the severity of injury progressively diminished and the lesion became confined to the injection site. The developmental pattern of sensitivity to AMPA toxicity in other brain regions differed although peak sensitivity consistently occurred near PND 10. Microinjection of quisqualate produced a developmental pattern of striatal susceptibility similar to AMPA although quisqualate was a considerable less potent neurotoxin. In additional experiments, the in vivo pharmacology of AMPA and quisqualate mediated brain injury was evaluated in a PND 7 rat model in order to determine the neurotoxic characteristics and specificity of these agonists in vivo. The severity of brain injury was assessed 5 days after intrastriatal excitotoxin injection by comparison of cerebral hemisphere weights.(ABSTRACT TRUNCATED AT 400 WORDS)
...
PMID:Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development. 138 Apr 2


<< Previous 1 2 3 4 5 6 7 8 9 10 Next >>