Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Pivot Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Target Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Query: CAS:6893-26-1 (
glutamate
)
73,096
document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)
Binding of the mGlu2/3 antagonist HYDIA in the closed conformation model of mGlu2 causes repulsive interactions with Y216 in lobe II of the binding pocket, preventing closure of the VFT.Modulation of metabotropic
glutamate
2/3 receptors represents a promising target for the treatment of neuropsychiatric disorders such as schizophrenia and depression. The novel mGlu2/3 ligand HYDIA ((1S,2R,3R,5R,6S)-2-amino-3-hydroxy-bicyclo[3.1.0]
hexane
-2,6-dicarboxylic acid) is a conformationally restricted and hydroxylated
glutamate
analogue. HYDIA is a potent and selective competitive antagonist of L-
glutamate
at the mGlu2/3 receptors in spite of being structurally very similar to the bicyclic LY354740, which is a potent and selective mGlu2/3 agonist. By comparing these two ligands, this study delineate the interaction mode of (3)H-HYDIA at the mGlu2 receptor, using both mutagenesis studies and computational modeling. Binding of HYDIA in the closed conformation model of mGlu2 results in repulsive interaction with the Y216 residue, preventing closure of the binding pocket and thus receptor activation. Consequently, HYDIA is proposed to bind in an open conformation model of mGlu2. Mutation of the structurally important Y216 residue in the binding site caused complete loss of affinity of both (3)H-LY354740 and (3)H-HYDIA. T168 in lobe I was shown to have an important role in HYDIA binding, and in the open conformation model this residue is interacting with the amino group of HYDIA. The Y144 residue in lobe I is shown to be engaged in both receptor interlobe binding and ligand interaction. Receptor mutations at this position (Y144G, Y144S and Y144A) showed dramatic impact on binding affinity and functional effect of HYDIA. The mGlu2 receptor mutants with increased structural flexibility at this position, which is crucial for pocket closure, were clearly preferred. These studies highlight the unique properties of the novel (3)H-HYDIA ligand and provide further support to our understanding of binding and signal transduction mechanisms of the mGlu2 receptor.
...
PMID:Mutagenesis and molecular modeling of the orthosteric binding site of the mGlu2 receptor determining interactions of the group II receptor antagonist (3)H-HYDIA. 1940 24
The interaction between 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors and metabotropic
glutamate
(mGlu) 2/3 receptors underlies the antipsychotic activity of mGlu2/3 receptor agonists in experimental animals and humans. The molecular nature of this interaction is only partially known. We here report for the first time that pharmacological activation of mGlu2/3 receptors attenuates the stimulation of polyphosphoinositide (PI) hydrolysis mediated by 5-HT(2A) receptors in the frontal cortex of living mice. Mice were injected intracerebroventricularly with [myo-(3)H]inositol and treated with drugs 1 h after a pretreatment with lithium, which blocks the conversion of inositol monophosphate into free inositol. Systemic injection of the mGlu2/3 receptor agonist (-)-2-oxa-4-aminocyclo[3.1.0]
hexane
-4,6-dicarboxylic acid (LY379268) inhibited the stimulation of PI hydrolysis induced by the hallucinogenic 5-HT(2A) receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) without affecting the stimulation by mGlu1/5 or muscarinic receptors. The action of LY379268 was prevented by the preferential mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). N-(4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), a selective mGlu2 receptor enhancer, also reduced DOI-stimulated PI hydrolysis when combined with subthreshold doses of LY379268. Systemic LY379268 inhibited DOI-stimulated PI hydrolysis in mice lacking either mGlu2 or mGlu3 receptors but was inactive in double mGlu2/mGlu3 receptor knockout mice, suggesting that both mGlu2 and mGlu3 receptors interact with 5-HT(2A) receptors. Surprisingly, contrasting results were obtained in cortical slice preparations, where LY379268 amplified both DOI- and 3,5-dihydroxyphenylglycine-stimulated PI hydrolysis. Amplification was abrogated by the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine, suggesting that experiments in brain slices are biased by an additional component of receptor-stimulated PI hydrolysis. This highlights the importance of in vivo models for the study of the interaction between 5-HT(2A) and mGlu2/3 receptors.
...
PMID:Activation of mGlu2/3 metabotropic glutamate receptors negatively regulates the stimulation of inositol phospholipid hydrolysis mediated by 5-hydroxytryptamine2A serotonin receptors in the frontal cortex of living mice. 1943 99
The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of
glutamate
or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both
glutamate
and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0]
hexane
-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0]
hexane
-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.
...
PMID:The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells. 1972 51
Some recently published in vitro studies with two metabotropic
glutamate
2/3 receptor (mGluR(2/3)) agonists [(-)-2-oxa-4-aminobicyclo[3.1.0]
hexane
-4,6-dicarboxylic acid (LY379268) and 1S,2S,5R,6S-2-aminobicyclo[3.1.0]
hexane
-2,6-bicaroxylate monohydrate (LY354740)] suggest that these compounds may also directly interact with dopamine (DA) D(2) receptors. The current in vitro and in vivo studies were undertaken to further explore this potential interaction with D(2) receptors. LY379268 and LY354740 failed to inhibit D(2) binding in both native striatal tissue homogenates and cloned receptors at concentrations up to 10 microM. LY379268 and LY354740 (up to 10 microM) also failed to stimulate [(35)S]GTPgammaS binding in D(2L)- and D(2S)-expressing clones in the presence of NaCl or N-methyl-d-glucamine. In an in vivo striatal D(2) receptor occupancy assay, LY379268 (3-30 mg/kg) or LY354740 (1-10 mg/kg) failed to displace raclopride (3 microg/kg i.v.), whereas aripiprazole (10-60 mg/kg) showed up to 90% striatal D(2) receptor occupancy. LY379268 (10 mg/kg) and raclopride (3 mg/kg) blocked d-amphetamine and phencyclidine (PCP)-induced hyperactivity in wild-type mice. However, the effects of LY379268 were lost in mGlu(2/3) receptor knockout mice. In DA D(2) receptor-deficient mice, LY379268 but not raclopride blocked both PCP and d-amphetamine-evoked hyperactivity. In the striatum and nucleus accumbens, LY379268 (3 and 10 mg/kg) was without effect on the DA synthesis rate in reserpinized rats and also failed to prevent S-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine-induced reductions in DA synthesis rate. Taken together, the current data fail to show evidence of direct DA D(2) receptor interactions of LY379268 and LY354740 in vitro or in vivo. Instead, these results provide further evidence for a novel antipsychotic mechanism of action for mGluR(2/3) agonists.
...
PMID:In vitro and in vivo evidence for a lack of interaction with dopamine D2 receptors by the metabotropic glutamate 2/3 receptor agonists 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-bicaroxylate monohydrate (LY354740) and (-)-2-oxa-4-aminobicyclo[3.1.0] Hexane-4,6-dicarboxylic acid (LY379268). 1975 62
Recently, it has been proposed that activation of either metabotropic
glutamate
receptors e.g. mGlu(5) by positive allosteric modulators or stimulation of mGluR(2/3) receptors by agonists may offer new strategy in schizophrenia treatment. The aim of the present study was to compare the effect of mGlu(5) receptor positive allosteric modulator, ADX47273 (S-(4-Fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone), mGluR(2/3) agonist, LY354740 ((1S,2S,5R,6S)-2-aminobicyclo[3.1.0]
hexane
-2,6-dicarboxylate monohydrate) and selected neuroleptics in animal models for positive schizophrenia symptoms. ADX47273 (3 and 10mg/kgi.p.), the typical antipsychotic haloperidol (0.1 and 0.2mg/kgi.p.), the atypical antipsychotics aripiprazole (1.25-5mg/kgi.p.) and olanzapine (2.5 and 5mg/kgi.p.) all reduced amphetamine-induced hyperlocomotion in Sprague-Dawley rats, unlike the mGlu(2/3) receptor agonist LY354740 (1-10mg/kgi.p.). Interestingly, haloperidol (0.1 and 0.2mg/kgi.p.), aripiprazole (1.25-5mg/kgi.p.) and olanzapine (1.25-5mg/kgi.p.), but not ADX47273 (1-10mg/kgi.p.), all reduced spontaneous locomotion and rearings at doses effective against amphetamine-induced hyperlocomotion. This indicates that the effect of ADX47273 in combination with amphetamine may be specific, and also suggests a lack of sedative side effects. Moreover, ADX47273 (30mg/kgi.p.), haloperidol (0.1 and 0.2mg/kgi.p.) and aripiprazole (5 and 10mg/kgi.p.) reversed apomorphine (0.5mg/kgs.c.)-induced deficits of prepulse inhibition, whereas neither LY354740 (1-10mg/kgi.p.) nor olanzapine (1.25-5mg/kgi.p.) produced this effect. Lack of effect of olanzapine was unexpected and at present no convincing explanation can be provided. In conclusion, in selected rodent models for positive schizophrenia symptoms, ADX47273 showed better efficacy than LY354740.
...
PMID:Comparison of the mGlu(5) receptor positive allosteric modulator ADX47273 and the mGlu(2/3) receptor agonist LY354740 in tests for antipsychotic-like activity. 1976 75
We observed that an aqueous extract of this medicinal plant exhibited significant neuroprotection against
glutamate
-induced toxicity in primary cultured rat cortical cells from methanol extracts of the seeds of P. tobira. To further clarify the underlying neuroprotective mechanism(s) of this observed effect, we isolated and identified various active fractions and components. By using such fractionation procedures, four known carotenoids compounds--tobiraxanthins A1, A2, A3, and B--were isolated from the n-
hexane
fraction of methanol extracts from the seeds of P. tobira. Among these four compounds, tobiraxanthins B exhibited significant neuroprotective activity against
glutamate
-induced neurotoxicity, as indicated by a cell viability of approximately 50%, at concentrations ranging from 0.1 microM to 10 microM. These findings indicate that, the neuroprotective effects of P. tobira might be due to the inhibition of
glutamate
-induced toxicity by carotenoids present in the plant.
...
PMID:Four carotenoids from Pittosporum tobira protect primary cultured rat cortical cells from glutamate-induced toxicity. 2004 15
A series of L-
glutamate
-based dendrons containing aromatic cores ranging from phenyl to naphthyl to anthryl were synthesized, and their self-assembly in organic solvents as well as in water was investigated. It was found that all of these dendrons formed organogels with
hexane
and simultaneously formed the hydrogels with water, thus exhibiting ambidextrous properties. Nanofiber structures are essentially formed in organogels and hydrogels, and some nanostrips are formed in some of the hydrogels. During gel formation, both hydrogen bonds between the amide groups and the pi-pi stacking between the aromatic rings played a predominant role in forming the ID nanostructures. Both the hydrogels and the organogels containing naphthyl and anthryl groups showed fluorescence emission. In comparison with the corresponding compounds in solution, the naphthyl-containing dendrons showed a strong enhancement of fluorescence in the gel. In the case of anthryl-containing dendrons, fluorescence enhancement was observed for the derivative with anthryl substituted at the 9 position, whereas a decrease was observed for the gels of the 2-substituted derivative. Although the chirality of L-
glutamate
could not be transferred to the aromatic chromophores in solution, it was transferred to the chromophores in gels as a result of the self-assembly and strong pi-pi interaction of the gelators. On the basis of the properties of the organogels and hydrogels, a thermally driven chiroptical switch was proposed. That is, the chirality disappeared when the gel was heated to solution, whereas it returned when cooled to a gel. The process can be repeated many times.
...
PMID:Design and self-assembly of L-glutamate-based aromatic dendrons as ambidextrous gelators of water and organic solvents. 2005 47
Fast glutamatergic and GABAergic transmission in the central nucleus of the inferior colliculus (ICC), a major auditory midbrain structure, is mediated respectively by alpha-amino-3-hydroxy-5-methylisoxazole-4 propionic acid (AMPA) and gamma-aminobutyric acid (GABA)(A) receptors. In this study, we used whole-cell patch clamp recordings in brain slices to investigate the effects of activation of metabotropic
glutamate
receptors (mGluRs) on synaptic responses mediated by AMPA and GABA(A) receptors in ICC neurons of young rats. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) mediated respectively by AMPA and GABA(A) receptors were elicited by stimulation of the lateral lemniscus, the major afferent pathway to the ICC. The agonists for groups I and II mGluRs, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD), and for group III mGluRs, L-2-amino-3-hydroxypropanoic acid 3-phosphate (L-SOP), did not affect intrinsic membrane properties of the ICC neurons. The agonist for group II mGluRs, (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]
hexane
-4,6-dicarboxylic acid (LY379268), significantly reduced the AMPA receptor-mediated EPSCs and GABA(A) receptor-mediated IPSCs. The effects were reversed by the group II mGluR antagonist, (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495). The agonists for groups I and III, (RS)-3,5-dihydroxyphenylglycine (DHPG) and L-SOP, respectively, did not affect AMPA or GABA(A) receptor-mediated responses. The reduction of the synaptic responses by LY379268 was accompanied by a substantial increase in a ratio of the second to the first AMPA receptor-mediated EPSCs and GABA(A) receptor-mediated IPSCs to paired-pulse stimulation. The results suggest that group II mGluRs regulate both fast glutamatergic and GABAergic synaptic transmission in the ICC, probably through a presynaptic mechanism due to reduction of transmitter release.
...
PMID:Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus. 2015 35
Hypoglycemic action of semipurified fractions from hot-water extracts of the submerged-culture broth of Agaricus blazei Murill was examined in streptozotocin (60 mg/kg, intraperitoneal)-induced diabetic male Sprague-Dawley rats, relative to the diabetes drug metformin. The hot-water extract, treated with ethanol to remove beta-glucans and glycoproteins, was freeze-dried, and fractionated into
hexane
, chloroform, ethyl acetate (EA), and butanol fractions. The EA fraction (EAF; 200 mg/kg body weight) reduced (p < 0.05) the blood glucose level in the oral glucose tolerance test, relative to the other fractions and control. In a 14 day-treatment study, diabetic rats treated with the EAF displayed a suppressed blood glucose level and elevated plasma insulin and glucose transport-4 proteins; the reactions occurred in a dose-dependent manner (200 and 400 mg/kg body weight) compared to those in control animals. The EAF reduced the levels of triglyceride and cholesterol in plasma, the activity of
glutamate
-oxaloacetate transaminase and
glutamate
-pyruvate transaminase in blood, and the content of thiobarbituric acid reactive substance in the liver and kidney. The hypoglycemic efficacy of the EAF (400 mg/kg body weight) was similar to that of metformin (500 mg/kg body weight). The EAF contained substantial amounts of isoflavonoids including genistein, genistin, daidzein, and daidzin, which could have contributed to the fraction's hypoglycemic action. These results indicate that the hot-water extract of the submerged-culture broth of Agaricus blazei contains an EAF having potent hypoglycemic action, which could be useful in the treatment of diabetes mellitus.
...
PMID:Semipurified fractions from the submerged-culture broth of Agaricus blazei Murill reduce blood glucose levels in streptozotocin-induced diabetic rats. 2019
Schizophrenic patients typically exhibit impairment of sensorimotor gating, which can be modeled in animals using acoustic prepulse inhibition of the startle. Both classical and atypical antipsychotics have been shown to improve prepulse inhibition in DBA/2J mice, a non-pharmacological model for impaired sensorimotor gating. The purpose of the present study was to clarify whether metabotropic
glutamate
receptors participate in control of sensorimotor gating. We evaluated various metabotropic glutamate receptor ligands on prepulse inhibition in DBA/2J mice. This basal level of prepulse inhibition in DBA/2J mice was increased by only the mGlu(1) receptor antagonists [2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one] (CFMTI), 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-alpha]benzimidazole-2-carboxamide hydrochloride (YM-298198), and (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone (JNJ16259685). There was no effect after treatments with the mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), the mGlu(2/3) receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]
hexane
-4,6-dicarboxylate (LY379268), the mGlu(2/3) receptor antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), the mGlu(7) receptor agonist N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082), the mGlu(7) receptor antagonist 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one (MMPIP), or the mGlu(8) receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG). These findings indicate that inhibition of mGlu(1) receptor selectively increases prepulse inhibition in DBA/2J mice and suggest that mGlu(1) receptor antagonists could be a novel treatment for some aspects of schizophrenia.
...
PMID:Pharmacological effects of metabotropic glutamate receptor ligands on prepulse inhibition in DBA/2J mice. 2037 Dec 35
<< Previous
1
2
3
4
5
6
7
8
9
10
Next >>