Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Pivot Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Target Concepts:
Gene/Protein
Disease
Symptom
Drug
Enzyme
Compound
Query: CAS:61191-21-7 (
2-butanone
)
604
document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)
1. Methane mono-oxygenase of Methylococcus capsulatus (Bath) catalyses the oxidation of various substituted methane derivatives including methanol. 2. It is a very non-specific oxygenase and, in some of its catalytic properties, apparently resembles the analogous enzyme from Methylomonas methanica but differs from those found in Methylosinus trichosporium and Methylomonas albus. 3. CO is oxidized to CO2. 4. C1-C8 n-alkanes are hydroxylated, yielding mixtures of the corresponding 1- and 2-alcohols; no 3- or 4-alcohols are formed. 5. Terminal alkenes yield the corresponding 1,2-epoxides. cis- or trans-but-2-ene are each oxidized to a mixture of 2,3-epoxybutane and but-2-en-1-ol with retention of the cis or trans configuration in both products;
2-butanone
is also formed from cis-but-2-ene only. 6. Dimethyl ether is oxidized. Diethyl ether undergoes sub-terminal oxidation, yielding ethanol and ethanal in equimolar amounts. 7. Methane mono-oxygenase also hydroxylates cyclic alkanes and aromatic compounds. However, styrene yields only styrene epoxide and pyridine yields only pyridine N-oxide. 8. Of those compounds tested, only NADPH can replace NADH as electron donor.
...
PMID:The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. 41 86
Mephenytoin (3-methyl-5-ethyl-5-phenylhydantoin) and its demethylated metabolite Nirvanol (5-ethyl-5-phenylhydantoin) were measured by a selective ion monitoring technique. This method was used in the analysis of both compounds in plasma from a patient receiving 50 mg and 400 mg of mephenytoin in single oral doses. Both compounds were extracted from plasma and ethylated prior to analysis by electron-impact mass spectrometry. Alkylation, using ethyl iodide in
2-butanone
, occurred in the N-1 and N-3 positions of the hydantoin ring when concentrated KOH was added to the reaction mixture. The lower limits of quantitation for mephenytoin and Nirvanol were 10 ng/ml and 50 ng/ml, respectively, and were found to be reproducible within 8% upon repeated quantification.
...
PMID:Measurement of mephenytoin (3-methyl-5-ethyl-5-phenylhydantoin) and its demethylated metabolite by selective ion monitoring. 54 67
The role of ketaone metabolism in
2-butanone
-induced potentiaion of carbon tetrachloride (CCl4) hepatotoxicity was studied in rats. The blood concentrations of 2-butanol, 3-hydroxy-2-butanone and 2,3-butanediol detected 4 h after dosing were 3.2 mg/100 ml, 2.4 mg/100 ml and 8.6 mg/100 ml, respectively. Eighteen hours after
2-butanone
, the concentration of 2,3-butanediol rose to 25.6 mg/100 ml, while the concentrations of 2-butanol and 3-hydroxy-2-butanone declined to 0.6 mg/100 ml and 1.4 mg/100 ml, respectively. A 16-h pretreatment with either
2-butanone
(2.1 ml/kg, p.o.) or 2,3-butanediol (2.12 ml/kg, p.o.) markedly enhanced the hepatotoxic response to CCl4 (0.1 ml/kg, i.p.), as measured by serum glutamic pyruvic transaminase activity and hepatic triglyceride content. In vivo, limited formation of 3-hydroxy-2-butanone occurred after this dose of 2,3-butanediol. These data suggest that the production of 3-hydroxy-2-butanone and 2,3-butanediol via
2-butanone
metabolism may participate in the augmented necrogenic effect of CCl4 seen after pretreatment with
2-butanone
.
...
PMID:Potentiation of CCl4 hepatotoxicity in rats by a metabolite of 2-butanone: 2,3-butanediol. 54 53
The synthesis of diazoketone analogs of amino acids and associated problems were investigated with N-phthaloyl-DL-alanine serving as a model. The carboxyl was activated by conversion to the acid chloride or, under mild conditions, to the mixed anhydride obtained with ethyl chloroformate or dicyclohexylcarbodiimide; the product was reacted with diazomethane. Deblocking the phthaloyl group with hydrazine gave 3-amino-1-diazo-
2-butanone
as a well-characterized solid salt and as a less stable oil. Further reactions of the blocked diazoketone of DL-alanine, such as conversion to alpha-haloketones, Wolff rearrangement, and deuterium exchange on C-1 were investigated. 3-A-mino-1-diazo-
2-butanone
had moderate inhibitory activity against mouse mammary adenocarcinoma in cell culture.
...
PMID:Alanine derivatives with reactive groups. 64
We reported earlier (Schloss, J. V., and Hartman, F. C. (1977) Biochem. Biophys. Res. Commun. 77, 230-236) that N-bromoacetylethanolamine phosphate is an affinity label for spinach ribulosebisphosphate carboxylase/oxygenase. We now show inactivation to be correlated directly with the alkylation either of a single lysyl residue (in the presence of Mg2+) or of 2 different cysteinyl residues (in the absence of Mg2+), consistent with the likelihood that these residues are located in the active site region. This proposition is further supported by the demonstration that the residues are protected from alkylation by substrate, a competitive inhibitor, or the transition state analog 2-carboxyribitol bisphosphate. Tryptic peptides that contain the modified residues have been isolated and sequenced. One of the 2 cysteinyl residues that are subject to alkylation is only 3 residues distant in sequence from the lysyl residue modified by bromoacetylethanolamine phosphate. This lysyl residue is identical with 1 of the 2 lysyl residues alkylated by the previously described affinity label, 3-bromo-1,4-dihydroxy-
2-butanone
1,4-bisphosphate (Stringer, C. D., and Hartman, F. C. (1978) Biochem. Biophys, Res. Commun. 80, 1043-1048).
...
PMID:Identification of essential lysyl and cysteinyl residues in spinach ribulosebisphosphate carboxylase/oxygenase modified by the affinity label N-bromoacetylethanolamine phosphate. 67 Feb 22
Volatile components present at spoilage of refrigerated chicken breasts were identified using high-vacuum-low-temperature distillation techniques followed by analysis with combined temperature-programmed gas chromatography and mass spectrometry. A comparison was made of the compounds detected from both irradiated and non-irradiated muscle stored at 2 and 10 degrees C under both aerobic and anaerobic conditions. Isolates were randomly selected from the spoiled poultry, identified, and evaluated for their ability to produce volatile spoilage noted when grown on radiation-sterilized chicken. Several isolates that produced off-odors on sterile chicken breasts were examined. Twenty-two compounds were associated with spoilage. Some of the compounds found on both irradiated and unirradiated samples were considered to play only a minor role in the spoilage aroma or were present in low concentrations, since the aroma of spoiled irradiated chicken lacked the harsh odor notes typical of spoiled unirradiated chicken. Fifteen of the 22 compounds were considered to be unique to unirradiated, aerobically spoiled samples. Nine of these compounds, hydrogen sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, methyl acetate, ethyl acetate, heptadiene, methanol, and ethanol, were found on chicken spoiled at both 2 and 10 degrees C. xylene, benzaldehyde, and 2,3-dithiahexane were detected only in samples stored at 2 degrees C and methyl thiolacetate,
2-butanone
, and ethyl propionate were associated with 10 degrees C spoilage. Fifty-eight isolates randomly selected from fresh, radiation-pasteurized, and unirradiated spoiled poultry were classified taxonomically, and 10 of them, which produced spoilage odors on sterilized chicken breasts, were selected for subsequent analysis of their volatiles. Isolates identified as Pseudomonas putrefaciens and Pseudomonas species that were members of groups I and II of Shewan's classification, as well as Flavobacterium and oxidative Moraxella, produced a number of the compounds found in the aroma of spoiled chicken. A total of 17 compounds were identified. Whereas no isolate produced all of the aroma compounds found in the aroma of spoiled chicken, together they did produce the nine found in unirradiated samples spoiled at either 2 or 10 degrees C, as well as methyl thiolacetate and xylene. Six compounds were present in the volatiles produced by the isolates but were absent in the volatiles identified from spoiled chicken. These were hydrogen cyanide, methyl isopropyl sulfide, 2-propane thiol, methyl propionate, ethyl benzene, and an unidentified compound.
...
PMID:Volatiles produced by microorganisms isolated from refrigerated chicken at spoilage. 97 Sep 42
Cyclohexane and hexadecane have been found to accelerate the penetration of local anesthetics (lidocaine, fomocaine, procaine) through the intact skin of guinea-pigs. Dissolved in cyclohexane, the potency of lidocaine is twice that of fomocaine, the latter being more active than procaine. When dissolved in hexadecane, the activity of the local anesthetics in markedly reduced. In combination with
2-butanone
, (30% w/w), a solvent without any apparent effect on the permeability of skin, enhanced anesthetic effects are noted. The anesthetic bases, dissolved in dimethyl sulfoxide, produce a much deeper and longer local anesthetic effect than the solutions of their salts.
...
PMID:[Local anesthesia after percutaneous application. II]. 103 80
The volatile fragments of air-aged cholesterol were analysed by means of gas chromatography-mass spectrometry; The following fourteen compounds were identified: ethanol, acetic acid, acetone, 2-methylpropene, 2-methyl-1-propanol, 2-methyl-2-propanol,
2-butanone
, 2-methylpropionic acid, 2-methyl-2-butanol, 2-pentanone, 3-methyl-2-butanone, 2-methyl-1-pentene, 2-methyl-2-pentanol, and 2-methyl-4-penten-2-ol. Their formation via decomposition of initially formed sterol hydroperoxides is discussed.
...
PMID:Cholesterol autoxidation: identification of the volatile fragments. 117 53
A previous study from our laboratory suggested that 3-bromo-1,4-dihydroxy-
2-butanone
1,4-bisphosphate is an affinity label for spinach ribulosebisphosphate carboxylase. To identify the essential residues that react with the reagent we have isolated and characterized the labeled peptides that are present in tryptic digests of inactivated enzyme but lacking in digests of the substrate-protected enzyme. Peptides representing two sites of modification have been obtained from the inactivated carboxylase. Both sites of reaction have been identified as lysyl residues based on the conversion of the derivatives to free lysine by oxidation with sodium metaperiodate. Sodium dodecyl sulfate-gel electrophoretic experiments show that both essential lysyl residues are contained within the large subunit of ribulosebisphosphate carboxylase. In addition to lysyl residues, sulfhydryl groups of the carboxylase are also modified, but their modification seems to play little role in the inactivation process. The carboxylase modified in the presence of substrate contains sulfhydryl derivatives but is essentially lacking in lysyl derivatives. By comparing the profiles from ion exchange chromatography of labeled peptides in digests of inactivated and substrate-protected enzyme, we conclude that the same sulfhydryl groups are modified in the absence and presence of substrate.
...
PMID:Evidence for essential lysyl residues in ribulosebisphosphate carboxylase by use of the affinity label 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate. 117 59
Methyl 5,6-dideoxy-2,3-O-isopropylidene-alpha-D-lyxo-hex-5-enofuranoside, prepared from methyl 2,3-O-isopropylidene-5,6-di-O-methylsulfonyl-alpha-D-mannofuranoside with sodium iodide in
2-butanone
, was acetolyzed and the product coupled with 6-benzamidochloromercuripurine by the titanium tetrachloride method. Removal of the N-benzoyl group with pictic acid afforded 9-(2,3-di-O-acetyl-5,6-dideoxy-beta-D-xylo-hex-5-enofuranosyl)adenine. In a similar manner, methyl 5,6-dideoxy-2,3-O-isopropylidene-alpha-L-lyxo-hex-5-enofuranoside was prepared from L-mannose and converted into 9-(2,3-di-O-acetyl-5,6-dideoxy-beta-L-xylo-hex-5-enofuranosyl)adenine, further de-esterified to give the free nucleoside. 2,3:5,6-Di-O-isopropylidene-alpha-L-mannofuranosyl chloride, prepared from L-mannose, gave 9-(2,3-O-isopropylidene-alpha-L-mannofuranosyl)adenine, hydrolyzed into 9-alpha-L-mannofuranosyladenine. Treatment with methanesulfonyl chloride gave the 5',6'-dimethanesulfonate, which gave with sodium iodide in acetone the 5',6'-unsaturated nucleoside, further hydrolyzed into 9-(5,6-dideoxy-alpha-L-lyxo-hex-5-enofuranosyl)adenine.
...
PMID:5,6-unsaturated hexofuranosyl glycosides and 5',6'-unsaturated hexofuranosyl nucleosides. 119 44
<< Previous
1
2
3
4
5
6
7
8
9
10
Next >>