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Abstract. Ontologies are recognised as important tools not only for effective and
efficient information sharing but also for information extraction and text mining. In
the biomedical domain, the need of a common ontology for information sharing has
long been recognised and several ontologies are now widely used.

However, there is confusion among researchers on the type of ontology it is needed
for text mining and how it can be used for effective knowledge management, sharing
and integration in biomedicine.

We argue in this paper that there are several different views of the definition of
ontology and that, while the logical view is popular for some applications, it may
be neither possible nor necessary for text mining.

We propose as an alternative to formal ontologies a text-centred approach for
knowledge sharing. We argue that a thesaurus (ie. an organised collection of terms
enriched with relations) is more useful for text mining applications than formal
ontologies.
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1. BACKGROUND

The currently dominant approach to knowledge sharing and integration
is the ontology-centred approach. Ontologies are conceptual models
which support consistent and unambiguous knowledge sharing and pro-
vide a framework for knowledge integration which ideally should be
flexible, rigorous and consistent.

By thesaurus in this paper we mean a terminological thesaurus as
distinct from a documentation thesaurus which is highly constrained as
it typically has a narrow set of relationships (broader term, narrower
term and related term) and a controlled vocabulary. A terminological
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thesaurus consists of a wider set of relationships pertinent to a subject
domain, linking the defined concepts of that domain with the terms
that realise them (including their variant forms).

While the ontology-centred approach has been successful in some
applications, in others it has encountered difficulties. While small on-
tologies can be built manually in a top-down manner, constructing
comprehensive ontologies for real applications is not a trivial task.
Furthermore, in many fields of application, knowledge to be shared and
integrated is presented mostly in text. Due to the inherent properties of
human language, it is not straightforward to link knowledge in text with
ontologies, even if comprehensive ontologies will ever be constructed.

More seriously, we suspect that in certain applications, such unam-
biguous and consistent conceptual models play a far less significant role
in sharing knowledge than the ontology-centred approach assumes. In
some cases, conceptual models across and within communities which
intend to share their knowledge are inherently more fragmented and
dynamic and less consistent than the ontology approach assumes.

In this paper, we propose a complementary approach, the text-

centred approach, in which ontological commitment is kept to a mini-
mum and, instead of using logical inferences for deriving implicit infor-
mation, the emphasis is put on techniques of text mining and automatic
knowledge acquisition for constructing ontologies from text.

We concentrate on Biomedicine, since Biomedicine has the hallmarks
of a domain for which the ontology-centred approach fails to deliver
effective knowledge sharing systems.

Knowledge sharing has become crucial in Biomedicine, because the
recent developments in molecular biology has revealed that all creatures
share, through history of evolution, common biological systems, i.e.
gene/protein networks which are encoded in DNA sequences, and that
all bio-medical phenomena (e.g. diseases, immunologic reaction, etc.)
have their roots in these common biological systems. This implies that
there is a high degree of interrelation between the areas of biology, med-
ical and pharmaceutical sciences through such gene/protein networks,
and thus knowledge in Biomedicine is highly inter-connected.

However, knowledge sharing in Biomedicine is not so straightfor-
ward. Firstly, knowledge to be shared is mostly presented in text, i.e.
domain literature, and the amount of text to be shared is enormous.
Although a great deal of crucial biomedical information is stored in
factual databases, the most relevant and useful information is still rep-
resented in domain literature. Medline contains over 14 million records,
extending its coverage by a large amount each month. Open access
publishers such as BioMed Central have growing collections of full text
scientific articles. There is increasing activity and interest in linking

submit.tex; 23/02/2005; 4:30; p.2



Thesaurus or logical ontology, which one do we need for text mining? 3

factual biodatabases to the literature, in using the literature to check,
complete or complement the contents of such databases, however cur-
rently such curation is laborious, being done largely manually with
few sophisticated aids, thus the risks of introducing errors or leaving
unsuspected gaps are non-negligible.

Secondly, since communities which intend to share their knowledge
have evolved independently of each other, they have their own vo-
cabularies and language uses. The same proteins, for example, often
have different names in different communities. More seriously, while
different fields are interested in common biological systems, they are
not exactly the same. Although similar proteins appear and may have
similar functions in different species, their functions and properties are
highly dependent on the surrounding context and not exactly the same.

Researchers who try to identify the function of a specific protein
in a specific biological context, may gather all relevant facts reported
in papers, including those on similar proteins. However, they do not
assume that all reported facts in literature are valid for the protein in
the context at hand. Rather, they will examine biological contexts in
literature to choose a set of contexts similar to the one at hand and infer
the function of the protein by considering and weighing all potential
implications and consequences of reported facts.

Most of the widely used ontologies have been built on a top-down
manner.They are limited in their conceptual coverage and they are
mainly oriented for human (expert) use. The difficulties and limitations
lie with the definition of concepts (classes, sets of instances) since one
is expected to identify all instances of a concept. This task demands
evidence from text.

Attempting to use ontologies to support knowledge management
tasks such as classification, clustering, summarisation, indexing, infor-
mation extraction, text mining etc reported disappointing results. One
of the main reasons for this is the failure to match instances (terms)
from text to concept labels of ontologies. This is due to the inherent
ambiguous and diverse nature of language.

Inferences and knowledge-sharing in Biomedicine as such are very
different from those envisaged by the ontology-centred approach in
general and by formal ontologists in particular. They are more like
abduction based on similarities than logical deduction. Reflecting on
the nature of fragmented communities and the modes of inferences in
Biomedicine, we argue in this paper that (i) terminological thesauri
which maintain relationships among language uses in different commu-
nities are more important than logically consistent ontologies and (ii)
bio-ontologies such as the GO (Gene Ontology) which biologists have
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found useful, though not completely satisfactory, are very different in
nature from ontologies which the ontology-centred approach envisages.

2. Difficulties in the Ontology-Centred Approach

Whenever different communities want to share knowledge, both ter-
minological and ontological problems arise. Different communities may
use different terms to denote the same concept and the same terms to
denote different concepts (terminological problems). It is also the case
that different communities view the same entities from different facets
and thus conceptualise them differently (ontological problems).

In some applications such as e-business, different communities can
reach an explicit agreement on a standard ontology and a set of stan-
dard terms to denote concepts or entities in the ontology. However, in a
constantly evolving domain such as biomedicine we encounter the fol-
lowing crucial differences: (1) Size of ontology (2) Context dependency

(3) Evolving nature of science (4) Hypothetical nature of ontology (5)
Inconsistency

2.1. Size of Ontology

The number of concepts covering ontologies in areas such as e-business
is more limited than in biomedicine. For example, the UMLS metathe-
saurus contains

(1) In total, as of July 2003,
900,551 concepts 1,852,501 English strings

(2) For the tissues, organs, and body parts,
81,435 concepts 177,540 English strings

(3) For the diseases and disorders,
114,444 concepts 350,495 English strings

Although it may be possible to manage relationships for a small
number of concepts, the task becomes intractable for a large amount
of concepts such as in the above. Despite a huge number of concepts in
UMLS, many of the recognised concepts do not appear simply because
available resources do not represent these types of entities e.g. terms
that refer to families or group of proteins (Blaschke and Valencia, 2002).
Equally seriously, termforms which actually appear in text are often not
registered in UMLS, since UMLS mainly focuses on conceptual infor-
mation. This causes practical difficulties in sharing knowledge in text.
In order to maintain such a large collection of concepts and termforms,
one needs NLP tools to keep the collection up-to-date in relation to
actual running text.
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2.2. Context Dependency

The assumption in logical ontologies is that categories are explicitly de-
fined by their defining properties and that, once an entity is judged as a
member of a category, it inherits a set of other properties (derived prop-
erties). The attraction of logical ontology comes from such inference
capability that presupposes static, context-independent relationships
between categories and properties.

However, such context-independent relationships are not the norm
in bio-medicine. Whether a protein contains certain properties or not
depends on factors such as its location inside a cell, the anatomical
position of a cell, the states of other bio-chemical entities around it,
etc., as well as the protein category to which it belongs.

Context dependency is one of the hardest problems in logical model-
ing of everyday inferences in AI such as qualification, non-monotonicity,
which severely restrict the utility of logically-based frameworks. Since
biological entities and events portray a high-degree of context-dependency
as everyday inferences, deduction would hardly be effective in Biomedicine
either. It is also worthwhile to note that, because of context-dependency,
bioscientists, even when they identify relevant events in curated data
bases, also consult original papers from scientific literature.

2.3. The Evolving Nature of Science

If we compare diverse domains which ontologies are to model, we ascer-
tain the following differences: while domains such as those in e-business
are well circumscribed and understood, domains such as Biomedicine
are open-ended and only partial understandings exist. In the former,
ontologies are introduced in order to make the shared understanding
explicit and thereby facilitate effective communication in business. On
the other hand, ontologies in biology go beyond the level of effective
communication: they are motivated by the need to fully understand and
model the domain. One way of modeling or understanding a domain is
through lexical means. That is, a new term is introduced to delineate
knowledge about a concept which is considered to be useful or relevant,
and to specify the properties or attributes characterising it (Sager
1990). In due course, new discoveries may change our understanding
of the concept which the term denotes and subsequently change its
meaning.

It is common in Biomedicine that a term introduced is subsequently
found to denote several distinct concepts, thus raising a need to intro-
duce new distinctive names. On the other hand, it is also very common
that two distinct terms used in different communities are later found
to denote the same concept and merged into a single term.
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Due to the evolving nature of science, concepts often are not fully
delineated, since they are themselves evolving. This is reflected in the
degree of term variation observed in dynamic fields. Dynamically evolv-
ing fields, such as biomedicine, exhibit a high degree of term variation
(Nenadic et al., 2005).

2.4. The Hypothetical Nature of Ontology

In scientific fields, not only the individual terms but also whole ontolog-
ical frameworks are hypothetical in nature. Let us take as an example
from anatomical ontologies.

In the NCI thesaurus, anatomic structure, system, or substance is
classified into body cavity, body fluid or substance, body part, body
region, organ, organ system, micro-anatomy etc. Within Organ, breast
is classified as bronchial tree and diaphragm and differentiated between
male and female breast.

Such an anatomical classification is not a transcendental object, but
has been hypothesized, revised and established through the long history
of medical science. There were many other classification schemas, some
were based on functions of organs and others on their physical prop-
erties. For now, the NCI classification of human anatomy is, more or
less, agreed upon by researchers, simply because the scheme is useful,
more effective than other schemes, for explaining and understanding
biomedical phenomena in humans.

In logical ontologies, classification schemas exist prior to a set of
their logical consequences. On the contrary to this, in scientific on-
tologies a set of consequences (phenomena to be explained) pre-exists
and researchers try to find an ontology by which they can derive or
explain them in the most consistent manner. In other words, to build
proper ontologies is a crucial step of science which looks for consistent
and elegant ways of explaining reality. As we will see in Section 4-
2, bio-ontologies such as the GO show characteristics of this type of
ontology.

2.5. Inconsistency

As we discussed, deductive inferences based on formal consistent ontolo-
gies would be of limited use in Biomedicine. Closer examinations of the
Gene ontology, Ancal ontologies, etc. show that logical inconsistency is
abundant and that they are closer to UDC, a multilingual classification
scheme, rather than a logical ontology. While researchers with formal
orientation describe inconsistencies in biomedical ontologies as short-
comings, their criticisms are misplaced due to their misunderstanding
of the nature of bio-ontologies, as pointed out by Ceusters et al.(2003).
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3. Towards a Text-Centred Approach

As we have already mentioned, a complete and context-independent
ontology is an unattainable goal in biomedicine. In the text-centred

approach we take the position that most relationships among concepts
as well as the concepts themselves remain implicit in text, waiting to
be discovered. Thus, text mining and NLP techniques play a more im-
portant role in uncovering hidden and implicit information than logical
deduction. This approach does not exclude the complementary use of
explicit partial ontologies. Instead of explicit definitions, we assume
that all term occurrences in text implicitly define the semantics of
concepts. In addition by mining term associations, relationships among
concepts are discovered.

3.1. The non trivial mapping between terms and concepts

As we have already reported , even within the same text, a term can
take different forms. A term may be expressed via various mechanisms
including orthographic variation (usage of hyphens and slashes (amino
acid and amino-acid), lower and upper cases (NF-KB and NF-kb),
spelling variations (tumour and tumor), various Latin/Greek transcrip-
tions (oestrogen and estrogen) and abbreviations (RAR and retinoic
acid receptor). Further complexity is introduced as authors vary the
forms they use in different ways (e.g. different reductions: thyroid hor-
mone receptor and thyroid receptor, or the SB2 gene and SB2) or use
embedded variant forms within larger forms (CREB-binding protein,
where CREB is in turn cAMP-response element-binding protein). This
rich variety of termforms for each term is a stumbling block especially
for language processing, as these forms have to be recognised, linked
and mapped to terminological and ontological resources. It also causes
problems to the human in cases where there is room for ambiguity or
where some termform has never been seen before and its provenance
(relationship to its term) is unclear.

Several approaches have been suggested to automatically integrate
and map between resources (e.g. between GO and UMLS using exact
string matching (Cantor et al, 2003), (Sarkar et al., 2003). Results
revealed the difficulties inherent in the integration of biological ter-
minologies, mainly in terms of extensive variability of lexical term
representations, and the problem of term ambiguity with respect to
mapping into a data source. For example, attempts to integrate gene
names in UMLS were not successful since they increased ambiguity,
and disambiguation information (particularly important for systematic
polysemy) was not available in lexical resources examined.
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In order to map successfully termforms in text to ontological con-
cepts we have to deal with language variability. Several techniques
dealing with term variation have been suggested.

Jacquemin and Tzoukermann conflate multiword terms by com-
bining stemming and terminological look-up. Stemming was used to
reduce words so that conceptually and linguistically related words were
normalised to the same stem (thus resolving some orthographic and
morphological variations), while a terminological thesaurus might be
used for spotting synonyms and linking lexical variants.

Nenadic et al. 2005 incorporate different types of term variation into
a base line method of automatic term recognition, the C/NC value
(Frantzi et al., 2000). The incorporation of treatment of term variation
enhanced the performance of the ATR system (where linking related
occurrences is vital for successful terminology management).

Another approach to the recognition of term variants uses approx-
imate string matching techniques to link or generate different term
variants (Tsuruoka and Tsujii, 2003).

3.2. Thesauri

For biologists it is common to use two different names, e.g. PKB and
Akt to denote the same protein. Taking into account the amount of new
terms added daily in the field compounded by the high degree of term
variability, it is not surprising that term synonyms are not recognised.
Lexical variability is an important aspect of scientific communication
and language use among different groups. Lexical variants and syn-
onyms coexist with standardised terms. Synonymy relationships are
often mentionned as comments in data base entries e.g. ”This protein

is similar to Protein-B”. Typically, these relationships remain hidden
in the databases but are nevertheless significant for inferencing and bio-
text mining and as such they should be made explicit in any knowledge
sharing system.

An example of a text-centred approach is the GENIA thesaurus
which keeps track of such relationships. We assume that since the mean-
ings of terms are only implicitly defined by all their occurrences in text,
many of the relationships such as synonymy, hyponymy, meronymy etc
are not further delineated. In order to make use of this hidden informa-
tion existing in various heterogeneous resources we use an integrated
terminological management system, TIMS, (Mima et al. 2002). TIMS
(Tagged Information Management System) links term entries of the
thesaurus with their occurrences in actual text, other surface terms
such as synonyms, related terms such as homologues, orthologues and
their ID record from various biodatabases.
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3.3. Thesauri and Knowledge

Ideally, terms are monoreferential, ie. a term coincides to a concept.
In reality, this is more of an exception than the norm. Let us observe
the following examples from biomedicine: Cycline-dependent kinase in-

hibitor was first introduced to represent a protein family with only
one extention, p27. However, cycline-dependent kinase inhibitor is used
interchangeably with p27 or p27kip1, as the name of the individual
protein and not as the name of the protein family (Morgan 2003). In
the case of NFKB2, the term is used to denote the name of a family of
two individual proteins with separate id’s in SwissProt. These proteins
are homologues belonging to different species, human and chicken.

The above examples demonstrate that it is rather difficult to es-
tablish equivalences between term forms and concepts. In effect, many
proteins have dual names to also denote the protein family they belong
to. MAP kinase is a family name including more than 40 individual
proteins and because of the number of individual proteins in the family,
it is never used as the name of individual proteins.

Since surface textual cues cannot distinguish between a genuine fam-
ily name from individual protein names derived from family names, the
thesaurus should include relationships of term forms with their actual
denotations, i.e. id’s in various data bases.

A thesaurus links surface terms with data base id’s and other types
of information in diverse data bases of proteins (SwissProt), genes (Lo-
cusLink), pathways(KEGG, TRANSFAC), etc. However, it is worth
noting that a thesaurus does not presuppose a single, logically consis-
tent ontology.

3.4. Minimum Ontology and Ambiguous Terms

In order for a thesaurus to be useful, it should maintain not only re-
lationships among surface forms but should be able to deal with term
ambiguity.

Gene names are often used to denote gene products (proteins) that
they encode. Although there are many definitions of the term gene,
it is nevertheless obvious that there are two distinct classes of entities,
genes and proteins. A term like suppressor of sable is used ambiguously
to refer to either one of these two classes genes and proteins which are
ontologically very different. While domains are part of proteins, names
of domains are sometimes used as the names of proteins that contain
them as part.

It is important to note that, without commitment to the ontological
distinction between gene and protein or domain and protein, we could
not capture even such an obvious ambiguity. We need therefore an on-
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tology which can represent and include term ambiguity; we call such an
ontology a minimum ontology. The minimum ontology is linguistically

motivated and acts as an interface to more detailed bio-ontologies. An
example of a minimum ontology is GENIA (Ohta et al., 2002) which
consists of 36 ontological classes. These classes are equivalent to the
classes of named entity recognisers based on linguistic cues. Referential
distinctions such as homologues, orthologues etc are not part of the
minimum ontology.

4. The Nature of Inferences and Bio-Ontologies

In formal ontologies, there is emphasis on the soundness and complete-
ness of the underlying deductive inference mechanism. In biology the
nature of inferencing mechanism is different as more emphasis is given
to the ability to make new plausible hypotheses.

4.1. An example of inferencing from biology

In order to illustrate our point about the nature of inferencing in
biology, let us consider the following example.

(1) Results from a biological experiment (micro-array data) showed
that three proteins, FLJ23251, BM002 and CGI-126, interacted with
each other, and that this interaction was peculiar to patients with a
specific disease. Based on these results, further information was needed
to understand the mechanisms of the interaction.

(2) A comment from a bio-database recorded that ”this protein

- ZK652.3 - is similar to human bone marrow protein BM002” in
the entry of ZK652.3. Further literature search, retrieved a paper on
ZK652.3 with the statement that ZK652.3 has ubiquitin-like fold. From
these two pieces of information, the biologist hypothesized that BM002
is actually ubiquitin and that the whole process is of ubiquitination (a
type of protein degradation process).

(3) In another scientific paper we found that FLJ23251 has ubiquitin-

activating enzyme E1-domain. This strengthened the hypothesis in step
(2).

(4) Since the process of ubiquitination often involves another two
enzymes, E2 or E3, we can hypothesize that CGI-126 would be either
one of these two enzymes. From this hypothesis we can then look for
further information of CGI-126.

The key to the whole process is Step (2), where two uncertain and
vague statements are combined to form a hypothesis. This step is ab-
ductive in nature, and the subsequent steps help us to improve the
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plausibility of the hypothesis by gathering further evidence. Unlike in
the process of deduction, as long as further evidence may improve the
plausibility of an hypothesis, the hypothesis is not logically implied.
Either the hypothesis would become plausible enough to be believed or
it should to be validated by biological experimentation.

An additional point is that in step (2) we use a vague relationship of
being-similar-to and that this similarity does not logically imply that
BM002 has also ubiquitin-like fold. It only suggests that it is plausible
to assume so.

Other relationships in biology such as homologues and orthologues
are used in the same way as being-similar-to. They imply that part of
the DNA sequences in different spieces are so similar that they are con-
sidered to be preserved across species through the history of evolution.
It practical terms the implication is that two genes and their prod-
ucts (proteins) are likely to share common functional roles in similar
networks in different spieces. Orthologues are most likely to share the
same properties, while just similar proteins share the least properties.
Such quantitative nature of inferences is a hallmark of abduction, and is
being modeled, not by logical frameworks, but by models such Bayesian
networks, etc.

4.2. Bio-ontology - the GO

The crucial step in abduction is making plausible hypotheses based
on evidences. This step should involve biologists who have to search
through a huge space of possibilities. In order to help biologists to
gather evidence from large scale knowledge bases to form plausible
hypotheses, classifications (ie classifying functions and processes and
relating them to proteins and genes) and/or ontologies are needed.
This is where the power of text mining can help: it can play a major
role in the abductive process.

The Gene Ontology (GO), one of the most widely used bio-ontologies,
aims to attain the same target as the text mining in the above. That
is, by establishing an explicit classification schema, it intends to help
biologists to gather facts on proteins which appear in similar biological
contexts. As for such classification of biological contexts, the GO has
three schemes, (1) cellular components (the location inside cells where
proteins appear), (2) molecular functions and (3) biological processes.
Under these three headings, the GO has a set of controlled vocabulary
containing around 17,000 terms. Whether the GO is useful or not is
judged by how effective the classification schemes are to retrieve rele-
vant proteins in similar biological contexts, relevant for identification
of unknown functions of a protein in a given biological context. As
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with anatomical ontologies, the whole classification scheme is based on
hypotheses that factors chosen for classification are relevant to the task
at hand.

It has also been suggested that the GO classes can be used as
evidence in abductive reasoning. Thus, we can rank the plausibility
of interactions of proteins by assuming that proteins reported to be in
similar processes with similar roles and exist in similar locations are
more likely to interact with each other.

5. Concluding Remarks

We have described a text centred approach to knowledge mining from
large repositories of biomedical literature. One of the most important
advantages of this approach is that it is data-driven, as the termi-
nological information is collected dynamically from corpora. This is
particularly important for domains such as biomedicine, as there is typ-
ically a gap between terms used in corpora and controlled vocabularies.
If we take into account the pace of creating new terms, standardisation
issues will still be a problem in the near future. Thus, the aim of a
text centred approach to knowledge management is to provide tools
to bridge that gap and facilitate effective mining and integration of
scientific literature, experimental data, ontologies and databases.

Our system TIMS explores similar ideas such as that a major source
of knowledge comes from text from which we derive information and
that terms (instances in text) play a crucial role in the integration of
knowledge sources, instead of a common ontology.

In TIMS, a set of operations on segments of text similar to those of
Regional Algebra was the core for retrieving and deriving information
from text. While such operations still play a central role, we plan to
integrate them with more quantitative methods and with other text
mining techniques.

We also plan to extend the linguistic units for integrating knowledge
sources from simple terms to complex expressions of events. Events
which are identified and extracted by information extraction techniques
are to be annotated in text and used as units for accessing various
knowledge sources. This method will make the links between records
in curated data bases and relevant portions of text much clearer and
will satisfy the users’ demands to access and read original papers once
relevant curated facts are located.

It is also a crucial step to integrate our work with the ontology-
centred approach. One possible extention is to use our system to popu-
late incomplete, existing ontologies. Classification of terms is essential
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for mapping to referent databases and knowledge integration. Some
steps in this direction have been already made (Spasic and Anani-
adou, 2004) for a term classification method that is guided by verb
complementation patterns; also (Spasic and Ananiadou, 2005) presents
a flexible variant of the edit distance to compare various contextual
features for measuring term similarities that is used for classification).

Although to illustrate our point we used biomedicine as an example,
our techniques are domain independent and applicable to other do-
mains complementing the ontology-based approach in many knowledge
management and sharing applications.
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