
A Persistent Feature-Object Database for Intelligent
Text Archive Systems

Takashi Ninomiya12, Jun’ichi Tsujii12, and Yusuke Miyao2

1 CREST, Japan Science and Technology Agency
Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi-shi, Saitama

{ninomi, tsujii }@is.s.u-tokyo.ac.jp
2 Department of Computer Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo
{ninomi, tsujii, yusuke }@is.s.u-tokyo.ac.jp

Abstract. This paper describes an intelligent text archive system in which typed
feature structures are embedded. The aim of the system is to associate feature
structures with regions in text, to make indexes for efficient retrieval, to allow
users to specify both structure and proximity, and to enable inference on typed
feature structures embedded in text. We propose a persistent mechanism for stor-
ing typed feature structures and the architecture of the text archive system.

1 Introduction

For the last decade, the main stream of NLP has focussed on studies for practical tech-
niques, such as information retrieval (IR) or information extraction (IE) with widely ac-
cessible corpora. For example, the bag-of-words techniques significantly increased IR
performance, and studies on IE proved that information can be extracted by matching
hand-crafted templates with text. However, these techniques are difficult to use in so-
phisticated approaches, such as reasoning-based or linguistically-motivated approaches,
because the bag-of-words techniques are not inherently structural, and matching tem-
plates is not well enough defined to be used for inference procedures. With the increas-
ing importance of knowledge sharing and processing by XML, such as Semantic Web
or question and answering (QA), intelligent procedures, like how to express a system of
knowledge, how to identify user demands, and where to locate information embedded
in text, are required to solve the problem.

The concern of this study is twofold: persistency of database and integration of
knowledge management, text archives and NLP. In general, the more complex the
framework, the less persistent its database becomes. For example, let us consider data
objects in an object-oriented programming language where a class hierarchy is defined,
and each object belongs to a class that defines its variables and functions. In such a case,
all data become useless when their class definitions change. There are some solutions to
this persistency problem, such as versioning. The most effective solution is to separate
the data structures and semantics as much as possible, similar to XML or a text database
where entries are separated by ‘space’ and ‘new line’.
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Fig. 1. Overall Foetea architecture

For integration, we assume that knowledge management includes the handling of
heterogeneous, dynamic and structural knowledge sources. They are heterogeneous be-
cause they are developed and managed by independent groups, organizers, or persons,
for different purposes and with different ontologies. They are dynamic because the type
of ontology to be used for inference can easily be changed in the process of develop-
ment and maintenance. Lastly, the knowledge sources should be able to express seman-
tic structural relations like events, anaphora, predicate argument structures, or quasi-
logical forms for intelligent IE or QA. We believe that a set of such semantic relations,
including syntactic relations, gives more precise and complex text processing than the
bag-of-words techniques when they are embedded in text.

In this paper, we introduce an intelligent text archive system, where data structures
are persistent, and assigned regions of text, and users can specify both structure and
proximity of text, and enable inference over structures embedded in text. We use typed
feature structures [1] as the structures, because they are mathematically well-defined,
and many linguistically-motivated grammar formalisms [2] are defined by feature struc-
tures. With a logic programming language for feature structures [3–5] and indexing
scheme for feature structures [6–8], structural relations can efficiently be inferred by
deduction, like a deductive database. Users can find feature structures embedded in text
by structural specification or proximal specification using region algebra.
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Fig. 2. Text

2 Feature-Object Embedded Text Archive System (Foetea)

Feature-object embedded text archive (Foetea) is an intelligent text archive system con-
sisting of text, data structures and an inference engine. Figure 1 shows the overall ar-
chitecture of Foetea. According to management policies, the architecture is separated
into the following three layers.

Data Representation Layer The data representation layer consists of afeature-object
database(explained later). The role of this layer is to represent data structures as la-
beled directed graphs, without any interpretation of the labels assigned to edges and
nodes. Only a few operations, e.g., loading, storing and rewriting of data structures,
are allowed.

Text Layer Regions in the text are annotated with data structures in the data repre-
sentation layer. This stand-off approach enables us to annotate heterogeneous data
structures and over-lapped regions. The role of this layer is to represent text and
regions associated with data structures, without any interpretation of regions and
text.

Conceptual Layer In the conceptual layer, data structures and text regions are inter-
preted and operated. Intuitively, this layer corresponds to the semantics for the data
structures. Interpretation and inference of data structures is only allowed in this
layer.

This separation makes the data structure persistent because a change in the interpre-
tation of data structures does not impact on the data structures themselves. In general,
the size of data structures is supposed to be very large. If the change of interpretation
impacts on the data structures, only a small change in the interpretation mechanism will
make all the data structures rubbish, or forces us to rewrite all the data structures, one
by one.

As a system, Foetea has the following components:feature-object databasefor the
data representation layer,inference moduleandtext region algebra modulefor the con-
ceptual layer, andtext, regionsandextentsfor the text layer.

Feature-Object DatabaseA feature-object databaseis comprised of a set of feature
structures and a set ofassociations. Let Key be a set of keys andAssoc be a
set of associations defined in the database. An association is a pair(k, q), whereq
is a node of a feature structure andk is a key, such thatk is unique in the set of
associations. Afeature objectis a feature structure associated with akey. Figure 4
shows an example of a feature-object database. Intuitively, the database is a very



Containment Operators
Containing:A . B = G({c|∃a ∈ A, b ∈ B.(a.s < b.s ∧ b.e < a.e ∧ c.s = a.s

∧c.e = a.e ∧ c.f = (a.f . b.f))})
Not Containing:A 6 .B = G({c|∃a ∈ A.(c.s = a.s ∧ c.e = a.e ∧ c.f = (a.f 6 . )

∧ 6 ∃b ∈ B.(a.s < b.s ∧ b.e < a.e))})
Contained In:A / B = G({c|∃a ∈ A, b ∈ B.(b.s < a.s ∧ a.e < b.e ∧ c.s = a.s

∧c.e = a.e ∧ c.f = (a.f / b.f))})
Not Contained In:A 6 /B = G({c|∃a ∈ A.(c.s = a.s ∧ c.e = a.e ∧ c.f = (a.f / )

∧ 6 ∃b ∈ B.(b.s < a.s ∧ a.e < b.e))})
Combination Operators

Both Of:A4B = G({c|c.s = min(a.s, b.s) ∧ c.e = max(a.e, b.e) ∧ c.f = (a.f 4 b.f)})
One Of:A5B = G({c|c.s = a.s ∧ c.e = a.e ∧ c.f = (a.f 5 )}

∪{c|c.s = b.s ∧ c.e = b.e ∧ c.f = ( 5 b.f)})
Ordering Operator

Followed By:A3B = G({c|∃a ∈ A, b ∈ B.(a.e < b.s ∧ c.s = a.s ∧ c.e = b.e
∧c.f = (a.f3b.f))})

Index Operator
Index:I(A) = G({c|c ∈ Extent ∧ ∃k, q, F.((k, q) ∈ Assoc ∧ k = c.f

∧q is the root node ofF ∧ F tA is defined)})
Shortest Matching Operator

GCL: G(A) = {a|a ∈ A∧ 6 ∃b ∈ A.(b 6= a ∧ a.s < b.s ∧ b.e < a.e}

Fig. 3. Operators of text region algebra

large feature structure without a root node, and associations are global variables that
represent sub-structures within the feature structure. This means that the database
system allows structure-sharing between different feature objects.

Text, Region and Extent Text is a sequence of character assigned integers starting
from zero up to the size of the text. Figure 2 shows an example of the text, “Ar-
ticles have disappeared”. With integers assigned to the text, aregionis defined by a
pair of integers, a starting position and an ending position in the text. In the exam-
ple, the region(0, 9) corresponds to the character sequence “Artifacts”. An extent
is a pair〈r, k〉 wherer is a region andk is a key, i.e., a feature structure is asso-
ciated with a region. LetExtent denote the collection of extents in the database.
We writex.s for the start position ofx ∈ Extent , x.e for the ending position of
x ∈ Extent , andx.f for the key associated withx ∈ Extent .

Inference Engine We suppose an inference engine is a system supporting a logic pro-
gramming language for typed feature structures like PROLOG with typed feature
structures as its predicate arguments instead of first order terms [3–5]. Users can
retrieve feature objects from the feature-object database, specialize or modify them
by inference, and insert or update them to the database. Users can also specify
extents in the combination, ordering, and containment relations using text region
algebra.

Text Region Algebra Text region algebra [9, 10] is usually used for searches on struc-
tured text annotated with tags, e.g., XML documents, to specify both proximity and



structure. Text region algebra for tags can be transcribed into that for feature ob-
jects. Figure 3 shows the operators of text region algebra for feature objects, that
are transcribed from [9]. The difference is that the index operatorI(A) retrieves ex-
tents that have feature objects unifiable withA. With text region algebra for feature
objects, users can specify the relation of the feature objects’ position in the text.
For example, suppose all paragraphs in the text are annotated with feature objects
[paragraph], and named entities are annotated by NE taggers. All paragraphs that
include both named entities “Mars” and “rover” can be retrieved by a query alge-
braI( [paragraph]) . (I( [mars])4 I( [rover])). Text region algebra enables us to
find feature objects that are difficult to find using unifiable relations, but are easily
found by specifying containment, combination, and ordering relations.

Figure 4 shows an example of text, extents, associations and feature structures. In
the example, syntactic and semantic analysis are annotated by semantic parsing. As
Foetea allows structure-sharing between different feature objects, a feature object that
represents a coreference in a long distance dependency can be represented. Structure-
sharing tagged as29represents a coreference of “Investors” and “they”.

3 Persistent Database Model for Typed Feature Structures

3.1 Background

Feature Structure

A feature structure is a tupleF = 〈Q, q̄, θ, δ〉, whereQ is a set of a feature structure’s
nodes,q̄ is the root node,θ(q) is a total node typing function that returns the type
assigned toq, andδ(π, q) is a partial function that returns a node reached by following
pathπ from q.

Type Constraint

Let Intro(f) be the function that returns the most general type having featuref , and
Approp(f, σ) be the function that specifies the most general type of value that feature
f can have for a node of typeσ. A feature structure is said to bewell-typedif, when-
everδ(f, q) is defined,Approp(f, θ(q)) is defined, and such thatApprop(f, θ(q)) v
θ(δ(f, q)). A feature structure is calledtotally well typedif it is well-typed and ifq ∈ Q
and featuref are such thatApprop(f, θ(q)) is defined, thenδ(f, q) is defined. Type
constraint is the constraint defined for each type. The idea of type constraint is that a
feature structure of typeσ must satisfy the constraint defined forσ. Well-typedness and
totally well-typedness are also special cases of type constraint.

3.2 Interpretation of Data Structures in Conceptual Layer

Feature structures in the conceptual layer are totally well-typed and may have type
constraints, but feature structures in the data representation layer are independent of
their interpretation, such as type hierarchy, the order of features, appropriateness of



0Investors9 10are13 14appealing23 24to26 27the30 31Securities41 42and45 46Exchange54 55Commission65.
. . . . . . . . .
353They357 358make362 363the366 367argument375 376 in378 379 letters386 387to389 390agency406

Extent W = {((0, 9), e1), ((10, 13), e2), ((14, 23), e3), ((24, 26), e4), ((27, 30), e5), ((31, 41), e6),
((42, 45), e7), ((46, 54), e8), ((55, 65), e9), ((353, 357), e10), ((358, 362), e11),
((363, 366), e12), ((367, 375), e13), ((376, 378), e14), ((379, 386), e15), ((387, 389), e16),
((390, 406), e17)}

Extent P = {((27, 65), e18), ((24, 65), e19), ((14, 65), e20), ((10, 65), e21), ((0, 65), e22),
((387, 406), e23), ((379, 406), e24), ((376, 406), e25), ((363, 375), e26), ((358, 406), e27),
((353, 406), e28)}

Extent = Extent W ∪ Extent P

Assoc = {(e1, 1 ), (e2, 2 ), (e3, 3 ), (e4, 4 ), (e5, 5 ), (e6, 6 ), (e7, 7 ), (e8, 8 ), (e9, 9 ), (e10, 10), (e11, 11),
(e12, 12), (e13, 13), (e14, 14), (e15, 15), (e16, 16), (e17, 17), (e18, 18), (e19, 19), (e20, 20), (e21, 21),
(e22, 22), (e23, 23), (e24, 24), (e25, 25), (e26, 26), (e27, 27), (e28, 28)}
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SEM: 31

[
REL: appeal
AGENT: 29

TARGET: 30
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]
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]
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CAT: s

SEM: 34

[
REL: make
AGENT: 32

TARGET: 33

]

LDTR: 10

[PHON: “They”
CAT: prp

SEM: 32

[
REL: they
COREF:29

]
]

RTRS:27
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CAT: vp

DTRS:

〈
11

[
PHON: “make”
CAT: vbp
SEM: 34

]
, 26




CAT: np
SEM: 33

LDTR: 12

[
PHON: “the”
CAT: dt

]

RDTR: 13

[PHON: “argument”
CAT: nn
SEM: 33argument

]


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CAT:pp

LDTR: 14

[
PHON: “in”
CAT: in

]

RDTR: 24
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CAT: np
LDTR: 15

[
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]
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[
PHON: “to”
CAT: to

]
RDTR: 17

[
PHON: “agency”
CAT: nn

]
]

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
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
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Fig. 4. Foetea database



types and features, and any other type constraints. Any inference, such as unification,
is not allowed in the data representation layer. The operations allowed by the database
areinsertion, perfect loading, partial loading, andupdate.

3.3 Operation

Insertion

Given a keyk ∈ Key and a feature structureG in the conceptual layer,G is inserted to
the database without modifying any feature structures in the database. The association
(k, q) for someq is rewritten to(k, q̄′) whereq̄′ is the root node of the inserted feature
structure.

Perfect Loading

Let F be a feature structure in the data representation layer. Perfect loading is the oper-
ation to calculate the most general feature structureG such thatF v G andG satisfies
the type constraints including totally well-typedness. If such a feature structure cannot
be interpreted in the conceptual layer, this operation fails. Perfect loading retrieves all
information in feature structures in the database if there are no inconsistencies.

Partial Loading

Let F be a feature structure〈QF , q̄F , θF , δF 〉 in the data representation layer. Partial
loading is the operation to calculate the most general feature structureG such thatG
satisfies the type constraints including totally well-typedness, andF ′ v G whereF ′ is
a feature structure〈QF , q̄F , θF , δF ′〉 whereδF ′(f, q) = δF (f, q) if Approp(f, θF (q))
is defined, otherwiseδF ′(f, q) is undefined. Partial loading retrieves all information of
types inF and tries to retrieve the edges ofF as possible. For a nodeq and an edge la-
beled with featuref such thatδ(f, q) is defined, the edge will not be retrieved if the type
assigned toq is prohibited from having featuref . Figure 6 shows an example of feature
objects. Suppose ‘sem’ does not have the featureTENSE:, i.e.,Approp(TENSE:, sem)
is not defined. Perfect loading fails to retrieveF1 becausesemis not unifiable with any
type that has the featureTENSE:. On the other hand, partial loading succeeds in retriev-
ing F1 by ignoring featureTENSE:. The result of the partial loading ofF1 becomes
F3.

Update

Update is a transaction that takes keysκ ⊂ K and a description of the logic program-
ming language. While the transaction is operating, feature structures associated withκ
in the database are retrieved into the conceptual layer first. Next, a description of the
programming language is executed. If the execution fails, the transaction finishes with-
out changing the database. If it succeeds, the retrieved feature structures are updated to
the database, and the transaction finishes.



���������	
��������	�
�

����

� � � ���� ���� � � � � �

�

�
���

k
�

���

���

��� 	 ��� 


���

� �
���

� �

�
�

���

��� 	 � ��� 
 �

� ��� �
� � ��� � �

���������	
��������	�
� � � � ���� ���� � � � � �

�

�
���

k
�

���

���

��� 	 ��� 


���

� �
���

� �
�
�

���

���
� � ��� � �

� ��� �

���������	
��������	�
� � � � ���� ���� � � � � �

�

�
���

k

�

�
�

���

��� 	 ��� 


���

� �
���

� �

�
�

���

�
�
� � ��� � �

� ��� �

�

�
���

� �

�
�

���

�
�
��� ��� ���

�
��
��
�

map(       ,         ) map(       ,         )

map(       ,         )

map(       ,         )

map(       ,         ) map(       ,         )

map(       ,         )

����

� � �

� ��

� ��

� ��

	 �	


 �


map(       ,         ) map(       ,         )

map(       ,         )

map(       ,         )

map(       ,         ) map(       ,         )

map(       ,         )

����

� � �

� ��

� ��

� ��

	




� �

� �

map(       ,         ) map(       ,         )

map(       ,         )

map(       ,         )

map(       ,         ) map(       ,         )

map(       ,         )

����

� � �

� ��

� ��

� ��

	




� �

� �

� � �� � �� ���� �������
���������

� � �� � � � � � �� ��� � ��� ��� � � ���� ����� � � � ��

� � �� � � ����� ���� ��� ��� ���	�
��

Fig. 5. Updating procedure



F1 =




sem
REL: appeal
AGENT: investor
TARGET: security-exchange-commission
TENSE:present-progressive


, F2 =




sem
REL: make

AGENT:

[sem
REL:they
COREF:⊥

]

TARGET:
[
sem
REL:argument

]


,

F3 =

[sem
REL: appeal
AGENT: investor
TARGET: security-exchange-commission

]
,

F ′1 =

[sem
REL: appeal
AGENT: 1 investor
TARGET: security-exchange-commission

]
, F ′2 =




sem
REL: make

AGENT:

[sem
REL:they
COREF: 1

]

TARGET:
[
sem
REL:argument

]




Fig. 6. Feature objects

For simplicity, suppose that only one keyk ∈ Key is given. Figure 5 shows the
process of updating. LetF be a feature structure〈QF , q̄F , θF , δF 〉 such that there ex-
ists an association(k, q̄F ) in the data representation layer. LetG(= 〈QG, q̄G, θG, δG〉)
be a feature structure acquired by retrievingF from the database. For allqF ∈ QF ,
map(qF , qG) is defined ifqF in F is retrieved. When updatingG, G is inserted to the
database, and for allqF andqG such thatmap(qF , qG), all edges that lead toqF are
rewritten and led to the insertedqG.

Suppose that we haveF1 andF2 depicted in Figure 6, and we want to unify the
feature structure reached by followingAGENT: in F1 and the feature structure reached
by following AGENT:COREF:in F2. First, F1 andF2 are retrieved to the conceptual
layer by partial loading, and then they are unified in the conceptual layer. Finally, they
are updated to the data representation layer, and the result becomesF ′1 andF ′2.

4 Conclusion

We proposed a persistent mechanism for storing typed feature structures and the over-
all architecture of the text archive system. The aim of the system is to associate typed
feature structures with regions in text, to make indexes for efficient retrieval, to allow
users to specify both structure and proximity, and to enable inference on feature struc-
tures embedded in the text. This persistent mechanism is achieved by separating the
role of the typed feature structures into data representation and interpretation. Feature
structures are preserved in the data representation layer that corresponds to data repre-
sentation, and can be modified in the conceptual layer that corresponds to interpretation.
Though only a few operations to feature structures are allowed in the data representation
layer, we have exemplified that they are sufficient because modified feature structures in
the conceptual layer can be updated, as if they were modified in the data representation
layer.
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