
TOWARDS DATA AND GOAL ORIENTED ANALYSIS:
TOOL INTER-OPERABILITY AND COMBINATORIAL

COMPARISON

Yoshinobu Kano1 Ngan Nguyen1 Rune Sætre1 Kazuhiro Yoshida1
Keiichiro Fukamachi1 Yusuke Miyao1 Yoshimasa Tsuruoka3

Sophia Ananiadou2,3 Jun’ichi Tsujii1,2,3

1Department of Computer Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 Tokyo

2School of Computer Science, University of Manchester
PO Box 88, Sackville St, MANCHESTER M60 1QD, UK

3NaCTeM (National Centre for Text Mining), Manchester Interdisciplinary Biocentre,

University of Manchester, 131 Princess St, MANCHESTER M1 7DN, UK

{kano,nltngan,satre,kyoshida,keif,yusuke,tsujii}
@is.s.u-tokyo.ac.jp

{yoshimasa.tsuruoka,sophia.ananiadou}@manchester.ac.uk

Abstract

Recently, NLP researches have advanced
using F-scores, precisions, and recalls with
gold standard data as evaluation measures.
However, such evaluations cannot capture
the different behaviors of varying NLP
tools or the different behaviors of a NLP
tool that depends on the data and domain in
which it works. Because an increasing
number of tools are available nowadays, it
has become increasingly important to grasp
these behavioral differences, in order to
select a suitable set of tools, which forms a
complex workflow for a specific purpose.
In order to observe such differences, we
need to integrate available combinations of
tools into a workflow and to compare the
combinatorial results. Although generic
frameworks like UIMA (Unstructured
Information Management Architecture)
provide interoperability to solve this
problem, the solution they provide is only
partial. In order for truly interoperable
toolkits to become a reality, we also need

sharable and comparable type systems with
an automatic combinatorial comparison
generator, which would allow systematic
comparisons of available tools. In this
paper, we describe such an environment,
which we developed based on UIMA, and
we show its feasibility through an example
of a protein-protein interaction (PPI)
extraction system.

1 Introduction

Recently, an increasing number of TM/NLP tools
such as part-of-speech (POS) taggers (Tsuruoka et
al., 2005), named entity recognizers (NERs)
(Settles, 2005) syntactic parsers (Hara et al., 2005)
and relation or event extractors (ERs) have been
developed. Nevertheless, it is still very difficult to
integrate independently developed tools into an
aggregated application that achieves a specific
task. The difficulties are caused not only by
differences in programming platforms and
different input/output data formats, but also by the
lack of higher level interoperability among
modules developed by different groups.

859

UIMA, Unstructured Information Management
Architecture (Lally and Ferrucci, 2004), which was
originally developed by IBM and has recently
become an open project in OASIS and Apache,
provides a promising framework for tool
integration. Although it has a set of useful
functionalities, UIMA only provides a generic
framework, thus it requires a user community to
develop their own platforms with a set of actual
software modules. A few attempts have already
been made to establish platforms, e.g. the CMU
UIMA component repository 1 , GATE
(Cunningham et al., 2002) with its UIMA
interoperability layer, etc.

However, simply wrapping existing modules to
be UIMA compliant does not offer a complete
solution. Most of TM/NLP tasks are composite in
nature, and can only be solved by combining
several modules. Users need to test a large number
of combinations of tools in order to pick the most
suitable combination for their specific task.

Although types and type systems are the only
way to represent meanings in the UIMA
framework, UIMA does not provide any specific
types, except for a few purely primitive types. In
this paper, we propose a way to design sharable
type systems. A sharable type system designed in
this way can provide the interoperability between
independently developed tools with fewer losses in
information, thus allowing for the combinations of
tools and comparisons on these combinations.

We show how our automatic comparison
generator works based on a type system designed in
that way. Taking the extraction of protein-protein

1 http://uima.lti.cs.cmu.edu/

interaction (PPI) as a typical example of a
composite task, we illustrate how our platform
helps users to observe the differences between
tools and to construct a system for their own needs.

2 Motivation and Background

2.1 Goal and Data Oriented Evaluation,
Module Selection and Inter-operability

There are standard evaluation metrics for NLP
modules such as precision, recall and F-value. For
basic tasks like sentence splitting, POS tagging,
and named-entity recognition, these metrics can be
estimated using existing gold-standard test sets.

Conversely, accuracy measurements based on
the standard test sets are sometimes deceptive,
since its accuracy may change significantly in
practice, depending on the types of text and the
actual tasks at hand. Because these accuracy
metrics do not take into account the importance of
the different types of errors to any particular
application, the practical utility of two systems
with seemingly similar levels of accuracy may in
fact differ significantly. To users and developers
alike, a detailed examination of how systems
perform (on the text they would like to process) is
often more important than standard metrics and
test sets. Naturally, far greater weight is placed in
measuring the end-to-end performance of a
composite system than in measuring the
performance of the individual components.

In reality, because the selection of modules
usually affects the performance of the entire
system, it is crucial to carefully select modules that
are appropriate for a given task. This is the main
reason for having a collection of interoperable

TOOL-SPECIFIC TYPES

PennPOS

Penn verb1 … …

POS
tcas.uima.Annotation
-begin: int -end: int

SyntacticAnnotation SemanticAnnotation

Sentence Phrase Token NamedEntity Relation
-ent: FSArray<NamedEntity>

POSToken
-pos: POS

RichToken

uima.jcas.cas.TOP

UnknownPOS

-base: String

-posType: String

ToolAToken

Verb Noun …..

ToolBPOSToken

Protein

ToolCProtein

ProteinProteinInteraction

ToolDPPI

Figure 1. Part of our type system

860

modules. We need to show how the ultimate
performance will be affected by the selection of
different modules and show the best combination
of modules in terms of the performance of the
whole aggregated system for the task at hand.

 Since the number of possible combinations of
component modules is typically large, the system
has to be able to enumerate and execute them
semi-automatically. This requires a higher level of
interoperability of individual modules than just
wrapping them for UIMA.

2.2 UIMA

2.2.1 CAS and Type System

The UIMA framework uses the “stand-off
annotation” style (Ferrucci et al., 2006). The raw
text in a document is kept unchanged during the
analysis process, and when the processing of the
text is performed, the result is added as new stand-
off annotations with references to their positions in
the raw text. A Common Analysis Structure (CAS)
maintains a set of these annotations, which in itself
are objects. The annotation objects in a CAS
belong to types that are defined separately in a
hierarchical type system. The features of an
annotation2 object have values that are typed as
well.

2.2.2 Component and Capability

Each UIMA Component has the capability
property which describes what types of objects the
component may take as the input and what types of
objects it produces as the output. For example, a
named entity recognizer detects named entities in

tools. Types should be defined in a distinct and

2 In the UIMA framework, Annotation is a base type which
has begin and end offset values. In this paper we call any
objects (any subtype of TOP) as annotations.

the text and outputs annotation objects of the type
NamedEntity.

It is possible to deploy any UIMA component as
a SOAP web service, so that we can combine a
remote component on a web service with the local
component freely inside a UIMA-based system.

3 Integration Platform and Comparators

3.1 Sharable and Comparable Type System

Although UIMA provides a set of useful
functionalities for an integration platform of
TM/NLP tools, users still have to develop the
actual platform by using these functionalities
effectively. There are several decisions for the
designer to make an integration platform.

Determining how to use types in UIMA is a
crucial decision. Our decision is to keep different
type systems by individual groups as they are, if
necessary; we require that individual type systems
have to be related through a sharable type system,
which our platform defines. Such a shared type
system can bridge modules with different type
systems, though the bridging module may lose
some information during the translation process.

Whether such a sharable type system can be
defined or not is dependent on the nature of each
problem. For example, a sharable type system for
POS tags in English can be defined rather easily,
since most of POS-related modules (such as POS
taggers, shallow parsers, etc.) more or less follow
the well established types defined by the Penn
Treebank (Marcus et al., 1993) tag set.

Figure 1 shows a part of our sharable type
system. We deliberately define a highly organized
type hierarchy as described above.

Secondly we should consider that the type
system may be used to compare a similar sort of

Comparable Tools
Sentence
Detector

Deep
Parser

Named
Entity

Recognizer

POS
Tagger

PPI
Extractor

AImed
Collection

Reader

Comparator
Evaluator

Tokenizer

Figure 2. PPI system workflow
(conceptual)

Figure 3.
Basic example pattern

Comparable Tools
OpenNLP
Sentence
Detector

Enju ABNER

Stepp
Tagger

UIMA
Tokenizer

Figure 4.
Complex tool example

Comparable Tools
GENIA
Tagger

OpenNLP
Sentence
Detector

Enju NER

POS
Tagger

Tokenizer

Figure 5.
Branch flow pattern

Comparable Tools
OpenNLP

S.D.

UIMA
Tokenizer

Enju ABNER

Stepp
Tagger

GENIA
S.D.

861

hierarchical manner. For example, both tokenizers
and POS taggers output an object of type Token,
but their roles are different when we assume a
cascaded pipeline. We defined Token as a
supertvpe, POSToken as subtypes of Token. Each
tool should have an individual type to make clear
which tool generated which instance, because each
tool may have a slightly different definition. This
is important because the capabilities are
represented by these types, and the capabilities are
the only attributes which are machine readable.

3.2 General Combinatorial Comparison

stem is defined in the previously

tually shows the workflow of our
wh

 pattern expansion mechanism which
ge

cases, a single tool can play two or
m

Generator

Even if the type sy
described way, there are still some issues to
consider when comparing tools. We illustrate these
issues using the PPI workflow that we utilized in
our experiments.

Figure 2 concep
ole PPI system. If we can prepare two or more

components for some type of the components in
the workflow (e.g. two sentence detectors and three
POS taggers), then we can make combinations of
these tools to form a multiplied number of
workflow patterns (2x3 = 6 patterns). See Table 1
for the details of UIMA components used in our
experiments.

We made a
nerates possible workflow patterns automatically

from a user-defined comparable workflow. A
comparable workflow is a special workflow that
explicitly specifies which set of components
should be compared. Then, users just need to group
comparable components (e.g. ABNER3 and MedT-
NER as a comparable NER group) without making
any modifications to the original UIMA
components. This aggregation of comparable
components is controlled by our custom workflow
controller.

In some
ore roles (e.g. the GENIA Tagger performs

tokenization, POS tagging, and NER; see Figure
4). It may be possible to decompose the original
tool into single roles, but in most cases it is
difficult and unnatural to decompose such a

ponent requires two or more input
ty

4 Experiments and Results

 using our PPI

e have several
co

igure 6 show a part of the
co

Table 2.

3 In the example figures, ABNER requires Sentence to
make the explanation clearer, though ABNER does not
require it in actual usage.

complex tool. We designed our comparator to
detect possible input combinations automatically
by the types of previously generated annotations,
and the input capability of each posterior
component. As described in the previous section,
the component should have appropriate
capabilities with proper types in order to permit
this detection.

When a com
pes (e.g. our PPI extractor requires outputs of a

deep parser and a protein NER system), there
could be different components used in the prior
flow (e.g. OpenNLP and GENIA sentence
detectors in Figure 5). Our comparator also
calculates such cases automatically.

 OO UO GOO U G A
UU 8 89 8

We have performed experiments
extraction system as an example (Kano et al.,
2008). It is similar to our BioCreative PPI system
(Sætre et al., 2006) but differs in that we have
deconstructed the original system into seven
different components (Figure 2).

As summarized in Table 1, w
mparable components and the AImed corpus as

the gold standard data. In this case, possible
combination workflow patterns are POSToken for
36, PPI for 589, etc.

Table 2, 3, 4 and F
mparison result screenshots between these

patterns on 20 articles from the AImed corpus. In
the tables, abbreviations like “OOG” stands for a
workflow of O(Sentence) -> O(Token) -

Sentence
comparisons (%).

Table 3. Part of Token
comparisons,
precision/recall (%).

OOO UOS GOO
UUO 87/74 81/68 85/68
GUG 74/65 73/65 78/65
GGO 92/95 81/84 97/95
OGO 100/100 89/88 100/94

G 0 0 - 85
U

 9/75 /75 8/70
GU 89/75 89/75 88/70
GG 92/95 91/95 97/95
OG

86 - 0 7
A 6 6 60 -
O - 10 10/100 99/99 00/9481 0 7

Table 4. Part of POSToken comparisons,
precision/recall (%)

862

G(POSToken), where O stands for OpenNLP, G
stands for Genia, U stands for UIMA, etc.

When neither of the compared results include
th

e comparison on Sentences
sh

%

0

e gold standard data (AImed in this case), the
comparison results show a similarity of the tools
for this specific task and data, rather than an
evaluation. Even if we lack an annotated corpus, it
is possible to run the tools and compare the results
in order to understand the characteristics of the
tools depending on the corpus and the tool
combinations.

Although th
ows low scores of similarities, Tokens are

almost the same; it means that input sentence
boundaries do not affect tokenizations so much.
POSToken similarities drop approximately 0-10
100

 100

Fi 6 NER (Protein) comp rison di

ences in

5 Conclusion and Future Work

ponents,

 design, which the UIMA
fra

 0
gure . a stribution of

precisions (x-axis, %) and recalls (y-axis, %).

from the similarities in Token; the differ
Token are mainly apostrophes and punctuations;
POSTokens are different because each POS
tagger uses a slightly different set of tags: normal
Penn tagset for Stepp tagger, BioPenn tagset
(includes new tags for hyphenation) for GENIA
tagger, and an original apostrophe tag for
OpenNLP tagger.

NLP tasks typically consist of many com
and it is necessary to show which set of tools are
most suitable for each specific task and data.
Although UIMA provides a general framework
with much functionality for interoperability, we
still need to build an environment that enables the
combinations and comparisons of tools for a
specific task.

The type system
mework does not provide, is one of the most

critical issues on interoperability. We have thus
proposed a way to design a sharable and
comparable type system. Such a type system allows
for the automatic combinations of any UIMA
compliant components and for the comparisons of
these combinations, when the components have
proper capabilities within the type system. We are

Sentence Token POSToken RichToken Protein Phrase PPI
GENIA Tagger: Trained on the WSJ, GENIA and PennBioIE corpora (POS). Uses Maximum Entropy (Berger
et al., 1996) classification, trained on JNLPBA (Kim et al., 2004) (NER). Trained on GENIA corpus (Sentence
Splitter).

Enju: HPSG parser with predicate argument structures as well as phrase structures. Although trained with Penn
Treebank, it can compute accurate analyses of biomedical texts owing to its method for domain adaptation (Hara
et al., 2005).

STePP Tagger: Based on probabilistic models, tuned to biomedical text trained by WSJ, GENIA (Kim et al.,
2003) and PennBioIE corpora.

MedT-NER: Statistical recognizer trained on the JNLPBA data.

ABNER: From the University of Wisconsin (Settles, 2005), wrapped by the Center for Computational
Pharmacology at the University of Colorado.

Akane++: A new version of the AKANE system (Yakushiji, 2006), trained with SVMlight-TK (Joachims, 1999;
Bunescu and Mooney, 2006; Moschitti, 2006) and the AImed Corpus.

UIMA Examples: Provided in the Apache UIMA example. Sentence Splitter and Tokenizer.

OpenNLP Tools: Part of the OpenNLP project (http://opennlp.sourceforge.net/), from Apache UIMA examples.

AImed Corpus: 225 Medline abstracts with proteins and PPIs annotated (Bunescu and Mooney, 2006).

Legend: Input type(s) required for that tool Input type(s) required optionally Output type(s)
Table 1. List of UIMA Components used in our experiment.

863

preparing to make a portion of the components and
services described in this paper publicly available
(http://www-tsujii.is.s.u-tokyo.ac.jp/uima/).

The final system shows which combination of
co

or this work includes
co

cknowledgments

e wish to thank Dr. Lawrence Hunter’s text

References
Vincent J. Della Pietra, and Stephen

IT

 Mooney.
on." Edited

tcheva, and V.

ls and

m Lally, Daniel Gruhl, and Edward

RC24122. (2006).

ilistic disambiguation model of an
t,
e

." MIT Press, (1999): 169-

ls
ser: a tool comparator, using protein-protein

i. "Introduction to the Bio-Entity

d

ics
 i180-

le Application with the Unstructured Information
l 43,

ng a Large Annotated Corpus of

ractical
. (2006).

oko

cally tagging genes, proteins, and other entity
rsity

,
ust Part-of-

tion

University of Tokyo, (2006).

mponents has the best score, and also generates
comparative results. This helps users to grasp the
characteristics and differences among tools, which
cannot be easily observed by the widely used F-
score evaluations only.

Future directions f
mbining the output of several modules of the

same kind (such as NERs) to obtain better results,
collecting other tools developed by other groups
using the sharable type system, making machine
learning tools UIMA compliant, and making grid
computing available with UIMA workflows to
increase the entire performance without modifying
the original UIMA components.

A

W
mining group at the Center for Computational
Pharmacology for discussing with us and making
their tools available for this research. This work
was partially supported by NaCTeM (the UK
National Centre for Text Mining), Grant-in-Aid for
Specially Promoted Research (MEXT, Japan) and
Genome Network Project (MEXT, Japan).
NaCTeM is jointly funded by
JISC/BBSRC/EPSRC.

Berger, Adam L.,
A. Della Pietra. "A maximum entropy approach to
natural language processing." Comput. Linguist. (M
Press) 22, no. 1 (1996): 39-71.
Bunescu, Razvan, and Raymond
"Subsequence Kernels for Relation Extracti
by Weiss Y., Scholkopf B. and Platt J., 171-178.
Cambridge, MA: MIT Press, (2006).
Cunningham, H., D. Maynard, K. Bon
Tablan. "GATE: A framework and graphical
development environment for robust NLP too
applications." Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics. (2002).
Ferrucci, David, Ada
Epstein. "Towards an Interoperability Standard for Text
and Multi-Modal Analytics." IBM Research Report,

Hara, Tadayoshi, Yusuke Miyao, and Jun'ichi Tsujii.
"Adapting a probab
HPSG parser to a new domain." Edited by Dale Rober
Wong Kam-Fai, Su Jian and Yee Oi. Natural Languag
Processing IJCNLP 2005. Jeju Island, Korea: Springer-
Verlag, (2005). 199-210.
Joachims, Thorsten. "Making large-scale support vector
machine learning practical
184.
Kano, Yoshinobu, et al. "Filling the gaps between too
and u
interaction as an example." Proceedings of The Pacific
Symposium on Biocomputing (PSB). Hawaii, USA, To
appear, (2008).
Kim, Jin-Dong, Tomoko Ohta, Yoshimasa Tsuruoka,
and Yuka Tateis
Recognition Task at JNLPBA." Proceedings of the
International Workshop on Natural Language
Processing. Geneva, Switzerland, (2004). 70-75.
Kim, Jin-Dong, Tomoko Ohta, Yuka Teteisi, an
Jun'ichi Tsujii. "GENIA corpus - a semantically
annotated corpus for bio-textmining." Bioinformat
(Oxford University Press) 19, no. suppl. 1 (2003):
i182.
Lally, Adam, and David Ferrucci. "Building an
Examp
Management Architecture." IBM Systems Journa
no. 3 (2004): 455-475.
Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz. "Buildi
English: The Penn Treebank." Computational
Linguistics 19, no. 2 (1993): 313-330.
Moschitti, Alessandro. "Making Tree Kernels P
for Natural Language Learning." EACL
Sætre, Rune, Kazuhiro Yoshida, Akane Yakushiji,
Yusuke Miyao, Yuichiroh Matsubayashi, and Tom
Ohta. "AKANE System: Protein-Protein Interaction
Pairs in BioCreAtIvE2 Challenge." Proceedings of the
Second BioCreative Challenge Evaluation Workshop.
(2007).
Settles, B. "ABNER: an open source tool for
automati
names in text." Bioinformatics (Oxford Unive
Press) 21, no. 14 (2005): 3191-3192.
Tsuruoka, Yoshimasa, Yuka Tateishi, Jin-Dong Kim
and Tomoko Ohta. "Developing a Rob
Speech Tagger for Biomedical Text." Advances in
Informatics - 10th Panhellenic Conference on
Informatics. Volos, Greece, (2005). 382-392.
Yakushiji, Akane. "Relation Information Extrac
Using Deep Syntactic Analysis." PhD Thesis,

864

http://www-tsujii.is.s.u-tokyo.ac.jp/uima/

