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Abstract

This paper describes a log-linear model with
an n-gram reference distribution for accurate
probabilistic HPSG parsing. In the model,
the n-gram reference distribution is simply
defined as the product of the probabilities
of selecting lexical entries, which are pro-
vided by the discriminative method with ma-
chine learning features of word and POS
n-gram as defined in the CCG/HPSG/CDG
supertagging. Recently, supertagging be-
comes well known to drastically improve
the parsing accuracy and speed, but su-
pertagging techniques were heuristically in-
troduced, and hence the probabilistic mod-
els for parse trees were not well defined.
We introduce the supertagging probabilities
as a reference distribution for the log-linear
model of the probabilistic HPSG. This is the
first model which properly incorporates the
supertagging probabilities into parse tree’s
probabilistic model.

1 Introduction

For the last decade, fast, accurate and wide-coverage
parsing for real-world text has been pursued in

sophisticated grammar formalisms, such as head-
driven phrase structure grammar (HPSG) (Pollard
and Sag, 1994), combinatory categorial grammar
(CCG) (Steedman, 2000) and lexical function gram-
mar (LFG) (Bresnan, 1982). They are preferred
because they give precise and in-depth analyses
for explaining linguistic phenomena, such as pas-
sivization, control verbs and relative clauses. The
main difficulty of developing parsers in these for-
malisms was how to model a well-defined proba-
bilistic model for graph structures such as feature
structures. This was overcome by a probabilistic
model which provides probabilities of discriminat-
ing a correct parse tree among candidates of parse
trees in alog-linear modelor maximum entropy
model(Berger et al., 1996) with many features for
parse trees (Abney, 1997; Johnson et al., 1999; Rie-
zler et al., 2000; Malouf and van Noord, 2004; Ka-
plan et al., 2004; Miyao and Tsujii, 2005). Follow-
ing this discriminative approach, techniques for effi-
ciency were investigated for estimation (Geman and
Johnson, 2002; Miyao and Tsujii, 2002; Malouf and
van Noord, 2004) and parsing (Clark and Curran,
2004b; Clark and Curran, 2004a; Ninomiya et al.,
2005).

An interesting approach to the problem of parsing
efficiency was using supertagging (Clark and Cur-
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ran, 2004b; Clark and Curran, 2004a; Wang, 2003;
Wang and Harper, 2004; Nasr and Rambow, 2004;
Ninomiya et al., 2006; Foth et al., 2006; Foth and
Menzel, 2006), which was originally developed for
lexicalized tree adjoining grammars (LTAG) (Ban-
galore and Joshi, 1999). Supertagging is a process
where words in an input sentence are tagged with
‘supertags,’ which are lexical entries in lexicalized
grammars, e.g., elementary trees in LTAG, lexical
categories in CCG, and lexical entries in HPSG. The
concept of supertagging is simple and interesting,
and the effects of this were recently demonstrated in
the case of a CCG parser (Clark and Curran, 2004a)
with the result of a drastic improvement in the pars-
ing speed. Wang and Harper (2004) also demon-
strated the effects of supertagging with a statisti-
cal constraint dependency grammar (CDG) parser
by showing accuracy as high as the state-of-the-art
parsers, and Foth et al. (2006) and Foth and Menzel
(2006) reported that accuracy was significantly im-
proved by incorporating the supertagging probabili-
ties into manually tuned Weighted CDG. Ninomiya
et al. (2006) showed the parsing model using only
supertagging probabilities could achieve accuracy as
high as the probabilistic model for phrase structures.
This means that syntactic structures are almost de-
termined by supertags as is claimed by Bangalore
and Joshi (1999). However, supertaggers themselves
were heuristically used as an external tagger. They
filter out unlikely lexical entries just to help parsing
(Clark and Curran, 2004a), or the probabilistic mod-
els for phrase structures were trained independently
of the supertagger’s probabilistic models (Wang and
Harper, 2004; Ninomiya et al., 2006). In the case of
supertagging of Weighted CDG (Foth et al., 2006),
parameters for Weighted CDG are manually tuned,
i.e., their model is not a well-defined probabilistic
model.

We propose a log-linear model for probabilistic
HPSG parsing in which the supertagging probabil-
ities are introduced as a reference distribution for
the probabilistic HPSG. The reference distribution is
simply defined as the product of the probabilities of
selecting lexical entries, which are provided by the
discriminative method with machine learning fea-
tures of word and part-of-speech (POS) n-gram as
defined in the CCG/HPSG/CDG supertagging. This
is the first model which properly incorporates the su-

pertagging probabilities into parse tree’s probabilis-
tic model. We compared our model with the proba-
bilistic model for phrase structures (Miyao and Tsu-
jii, 2005). This model uses word and POS unigram
for its reference distribution, i.e., the probabilities of
unigram supertagging. Our model can be regarded
as an extension of a unigram reference distribution
to an n-gram reference distribution with features that
are used in supertagging. We also compared with a
probabilistic model in (Ninomiya et al., 2006). The
probabilities of their model are defined as the prod-
uct of probabilities of supertagging and probabilities
of the probabilistic model for phrase structures, but
their model was trained independently of supertag-
ging probabilities, i.e., the supertagging probabili-
ties are not used for reference distributions.

2 HPSG and probabilistic models

HPSG (Pollard and Sag, 1994) is a syntactic theory
based on lexicalized grammar formalism. In HPSG,
a small number of schemata describe general con-
struction rules, and a large number of lexical entries
express word-specific characteristics. The structures
of sentences are explained using combinations of
schemata and lexical entries. Both schemata and
lexical entries are represented by typed feature struc-
tures, and constraints represented by feature struc-
tures are checked withunification.

An example of HPSG parsing of the sentence
“Spring has come” is shown in Figure 1. First,
each of the lexical entries for “has” and “come”
is unified with a daughter feature structure of the
Head-Complement Schema. Unification provides
the phrasal sign of the mother. The sign of the
larger constituent is obtained by repeatedly applying
schemata to lexical/phrasal signs. Finally, the parse
result is output as a phrasal sign that dominates the
sentence.

Given a setW of words and a setF of feature
structures, an HPSG is formulated as a tuple,G =
〈L, R〉, where

L = {l = 〈w, F 〉|w ∈ W, F ∈ F} is a set of
lexical entries, and

R is a set of schemata; i.e.,r ∈ R is a partial
function:F × F → F .

Given a sentence, an HPSG computes a set of
phrasal signs, i.e., feature structures, as a result of
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Figure 1: HPSG parsing.

parsing. Note that HPSG is one of the lexicalized
grammar formalisms, in which lexical entries deter-
mine the dominant syntactic structures.

Previous studies (Abney, 1997; Johnson et al.,
1999; Riezler et al., 2000; Malouf and van Noord,
2004; Kaplan et al., 2004; Miyao and Tsujii, 2005)
defined a probabilistic model of unification-based
grammars including HPSG as alog-linear modelor
maximum entropy model(Berger et al., 1996). The
probability that a parse resultT is assigned to a
given sentencew = 〈w1, . . . , wn〉 is

(Probabilistic HPSG)

phpsg(T |w) =
1

Zw
exp

(∑
u

λufu(T )

)

Zw =
∑
T ′

exp

(∑
u

λufu(T ′)

)
,

whereλu is a model parameter,fu is a feature func-
tion that represents a characteristic of parse treeT ,
andZw is the sum over the set of all possible parse
trees for the sentence. Intuitively, the probability
is defined as the normalized product of the weights
exp(λu) when a characteristic corresponding tofu

appears in parse resultT . The model parameters,λu,
are estimated using numerical optimization methods
(Malouf, 2002) to maximize the log-likelihood of
the training data.

However, the above model cannot be easily esti-
mated because the estimation requires the compu-
tation of p(T |w) for all parse candidates assigned

to sentencew. Because the number of parse can-
didates is exponentially related to the length of the
sentence, the estimation is intractable for long sen-
tences. To make the model estimation tractable, Ge-
man and Johnson (Geman and Johnson, 2002) and
Miyao and Tsujii (Miyao and Tsujii, 2002) proposed
a dynamic programming algorithm for estimating
p(T |w). Miyao and Tsujii (2005) also introduced a
preliminary probabilistic modelp0(T |w) whose es-
timation does not require the parsing of a treebank.
This model is introduced as areference distribution
(Jelinek, 1998; Johnson and Riezler, 2000) of the
probabilistic HPSG model; i.e., the computation of
parse trees given low probabilities by the model is
omitted in the estimation stage (Miyao and Tsujii,
2005), or a probabilistic model can be augmented
by several distributions estimated from the larger
and simpler corpus (Johnson and Riezler, 2000). In
(Miyao and Tsujii, 2005),p0(T |w) is defined as the
product of probabilities of selecting lexical entries
with word and POS unigram features:

(Miyao and Tsujii (2005)’s model)

puniref (T |w) = p0(T |w)
1

Zw
exp

(∑
u

λufu(T )

)

Zw =
∑
T ′

p0(T
′|w) exp

(∑
u

λufu(T ′)

)

p0(T |w) =

n∏
i=1

p(li|wi),

whereli is a lexical entry assigned to wordwi in
T andp(li|wi) is the probability of selecting lexical
entryli for wi.

In the experiments, we compared our model with
other two types of probabilistic models using a su-
pertagger (Ninomiya et al., 2006). The first one is
the simplest probabilistic model, which is defined
with only the probabilities of lexical entry selec-
tion. It is defined simply as the product of the prob-
abilities of selecting all lexical entries in the sen-
tence; i.e., the model does not use the probabilities
of phrase structures like the probabilistic models ex-
plained above. Given a set of lexical entries,L, a
sentence,w = 〈w1, . . . , wn〉, and the probabilistic
model of lexical entry selection,p(li ∈ L|w, i), the
first model is formally defined as follows:
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Figure 2: Example of features.

(Ninomiya et al. (2006)’s model 1)

pmodel1(T |w) =

n∏
i=1

p(li|w, i),

whereli is a lexical entry assigned to wordwi in T
andp(li|w, i) is the probability of selecting lexical
entryli for wi.

The probabilities of lexical entry selection,
p(li|w, i), are defined as follows:

(Probabilistic model of lexical entry selection)

p(li|w, i) =
1

Zw
exp

(∑
u

λufu(li,w, i)

)

Zw =
∑

l′
exp

(∑
u

λufu(l′,w, i)

)
,

whereZw is the sum over all possible lexical entries
for the wordwi.

The second model is a hybrid model of supertag-
ging and the probabilistic HPSG. The probabilities
are given as the product of Ninomiya et al. (2006)’s
model 1 and the probabilistic HPSG.

(Ninomiya et al. (2006)’s model 3)

pmodel3(T |w) = pmodel1(T |w)phpsg(T |w)

In the experiments, we compared our model with
Miyao and Tsujii (2005)’s model and Ninomiya et

fbinary =

〈
r, d, c,
spl, syl, hwl, hpl, hll,
spr, syr, hwr, hpr, hlr

〉

funary = 〈r, sy, hw, hp, hl〉
froot = 〈sy, hw, hp, hl〉
flex = 〈wi, pi, li〉

fsptag =

〈
wi−1, wi, wi+1,
pi−2, pi−1, pi, pi+1, pi+2

〉

r name of the applied schema
d distance between the head words of the daughters

c
whether a comma exists between daughters
and/or inside daughter phrases

sp number of words dominated by the phrase
sy symbol of the phrasal category
hw surface form of the head word
hp part-of-speech of the head word
hl lexical entry assigned to the head word
wi i-th word
pi part-of-speech forwi

li lexical entry forwi

Table 1: Feature templates.

al. (2006)’s model 1 and 3. The features used in our
model and their model are combinations of the fea-
ture templates listed in Table 1 and Table 2. The
feature templatesfbinary andfunary are defined for
constituents at binary and unary branches,froot is a
feature template set for the root nodes of parse trees.
flex is a feature template set for calculating the uni-
gram reference distribution and is used in Miyao and
Tsujii (2005)’s model.fsptag is a feature template
set for calculating the probabilities of selecting lex-
ical entries in Ninomiya et al. (2006)’s model 1 and
3. The feature templates infsptag are word trigrams
and POS 5-grams. An example of features applied
to the parse tree for the sentence “Spring has come”
is shown in Figure 2.

3 Probabilistic HPSG with an n-gram
reference distribution

In this section, we propose a probabilistic model
with an n-gram reference distribution for probabilis-
tic HPSG parsing. This is an extension of Miyao
and Tsujii (2005)’s model by replacing the unigram
reference distribution with an n-gram reference dis-
tribution. Our model is formally defined as follows:
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combinations of feature templates forfbinary

〈r, d, c, hw, hp, hl〉, 〈r, d, c, hw, hp〉, 〈r, d, c, hw, hl〉,
〈r, d, c, sy, hw〉, 〈r, c, sp, hw, hp, hl〉, 〈r, c, sp, hw, hp〉,
〈r, c, sp, hw, hl〉, 〈r, c, sp, sy, hw〉, 〈r, d, c, hp, hl〉,
〈r, d, c, hp〉, 〈r, d, c, hl〉, 〈r, d, c, sy〉, 〈r, c, sp, hp, hl〉,
〈r, c, sp, hp〉, 〈r, c, sp, hl〉, 〈r, c, sp, sy〉

combinations of feature templates forfunary

〈r, hw, hp, hl〉, 〈r, hw, hp〉, 〈r, hw, hl〉, 〈r, sy, hw〉,
〈r, hp, hl〉, 〈r, hp〉, 〈r, hl〉, 〈r, sy〉

combinations of feature templates forfroot

〈hw, hp, hl〉, 〈hw, hp〉, 〈hw, hl〉,
〈sy, hw〉, 〈hp, hl〉, 〈hp〉, 〈hl〉, 〈sy〉

combinations of feature templates forflex

〈wi, pi, li〉, 〈pi, li〉

combinations of feature templates forfsptag

〈wi−1〉, 〈wi〉, 〈wi+1〉,
〈pi−2〉, 〈pi−1〉, 〈pi〉, 〈pi+1〉, 〈pi+2〉, 〈pi+3〉,
〈wi−1, wi〉, 〈wi, wi+1〉,
〈pi−1, wi〉, 〈pi, wi〉, 〈pi+1, wi〉,
〈pi, pi+1, pi+2, pi+3〉, 〈pi−2, pi−1, pi〉,
〈pi−1, pi, pi+1〉, 〈pi, pi+1, pi+2〉
〈pi−2, pi−1〉, 〈pi−1, pi〉, 〈pi, pi+1〉, 〈pi+1, pi+2〉

Table 2: Combinations of feature templates.

(Probabilistic HPSG with an n-gram reference distribution)

pnref (T |w) =

1

Znref
pmodel1(T |w) exp

(∑
u

λufu(T )

)

Znref =

∑
T ′

pmodel1(T
′|w) exp

(∑
u

λufu(T ′)

)
.

In our model, Ninomiya et al. (2006)’s model 1
is used as a reference distribution. The probabilis-
tic model of lexical entry selection and its feature
templates are the same as defined in Ninomiya et al.
(2006)’s model 1.

The formula of our model is the same as Ni-
nomiya et al. (2006)’s model 3. But, their model
is not a probabilistic model with a reference distri-
bution. Both our model and their model consist of
the probabilities for lexical entries (=pmodel1(T |w))
and the probabilities for phrase structures (= the rest
of each formula). The only difference between our
model and their model is the way of how to train
model parameters for phrase structures. In both our

model and their model, the parameters for lexical en-
tries (= the parameters ofpmodel1(T |w)) are first es-
timated from the word and POS sequences indepen-
dently of the parameters for phrase structures. That
is, the estimated parameters for lexical entries are
the same in both models, and hence the probabilities
of pmodel1(T |w) of both models are the same. Note
that the parameters for lexical entries will never be
updated after this estimation stage; i.e., the parame-
ters for lexical entries are not estimated in the same
time with the parameters for phrase structures. The
difference of our model and their model is the esti-
mation of parameters for phrase structures. In our
model, given the probabilities for lexical entries, the
parameters for phrase structures are estimated so as
to maximize the entire probabilistic model (= the
product of the probabilities for lexical entries and
the probabilities for phrase structures) in the train-
ing corpus. In their model, the parameters for phrase
structures are trained without using the probabili-
ties for lexical entries, i.e., the parameters for phrase
structures are estimated so as to maximize the prob-
abilities for phrase structures only. That is, the pa-
rameters for lexical entries and the parameters for
phrase structures are trained independently in their
model.

Miyao and Tsujii (2005)’s model also uses a ref-
erence distribution, but with word and POS unigram
features, as is explained in the previous section. The
only difference between our model and Miyao and
Tsujii (2005)’s model is that our model uses se-
quences of word and POS tags as n-gram features
for selecting lexical entries in the same way as su-
pertagging does.

4 Experiments

We evaluated the speed and accuracy of parsing
by using Enju 2.1, the HPSG grammar for English
(Miyao et al., 2005; Miyao and Tsujii, 2005). The
lexicon of the grammar was extracted from Sec-
tions 02-21 of the Penn Treebank (Marcus et al.,
1994) (39,832 sentences). The grammar consisted
of 3,797 lexical entries for 10,536 words1. The prob-

1An HPSG treebank is automatically generated from the
Penn Treebank. Those lexical entries were generated by apply-
ing lexical rules to observed lexical entries in the HPSG tree-
bank (Nakanishi et al., 2004). The lexicon, however, included
many lexical entries that do not appear in the HPSG treebank.
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No. of tested sentences Total No. of sentences Avg. length of tested sentences
Section 23 2,299 (100.00%) 2,299 22.2
Section 24 1,245 (99.84%) 1,247 23.0

Table 3: Statistics of the Penn Treebank.

Section 23 (Gold POSs)
LP LR LF UP UR UF Avg. time

(%) (%) (%) (%) (%) (%) (ms)
Miyao and Tsujii (2005)’s model 87.26 86.50 86.88 90.73 89.93 90.33 604
Ninomiya et al. (2006)’s model 1 87.23 86.47 86.85 90.05 89.27 89.66 129
Ninomiya et al. (2006)’s model 3 89.48 88.58 89.02 92.33 91.40 91.86 152
our model 1 89.78 89.28 89.53 92.58 92.07 92.32 234
our model 2 90.03 89.60 89.82 92.82 92.37 92.60 1379

Section 23 (POS tagger)
LP LR LF UP UR UF Avg. time

(%) (%) (%) (%) (%) (%) (ms)
Miyao and Tsujii (2005)’s model 84.96 84.25 84.60 89.55 88.80 89.17 674
Ninomiya et al. (2006)’s model 1 85.00 84.01 84.50 88.85 87.82 88.33 154
Ninomiya et al. (2006)’s model 3 87.35 86.29 86.82 91.24 90.13 90.68 183
Matsuzaki et al. (2007)’s model 86.93 86.47 86.70 - - - 30
our model 1 87.28 87.05 87.17 91.62 91.38 91.50 260
our model 2 87.56 87.46 87.51 91.88 91.77 91.82 1821

Table 4: Experimental results for Section 23.

abilistic models were trained using the same portion
of the treebank. We used beam thresholding, global
thresholding (Goodman, 1997), preserved iterative
parsing (Ninomiya et al., 2005) and quick check
(Malouf et al., 2000).

We measured the accuracy of the predicate-
argument relations output of the parser. A
predicate-argument relation is defined as a tuple
〈σ,wh, a, wa〉, whereσ is the predicate type (e.g.,
adjective, intransitive verb),wh is the head word of
the predicate,a is the argument label (MODARG,
ARG1, ..., ARG4), and wa is the head word of
the argument. Labeled precision (LP)/labeled re-
call (LR) is the ratio of tuples correctly identified
by the parser2. Unlabeled precision (UP)/unlabeled
recall (UR) is the ratio of tuples without the pred-
icate type and the argument label. This evaluation
scheme was the same as used in previous evaluations
of lexicalized grammars (Hockenmaier, 2003; Clark

The HPSG treebank is used for training the probabilistic model
for lexical entry selection, and hence, those lexical entries that
do not appear in the treebank are rarely selected by the proba-
bilistic model. The ‘effective’ tag set size, therefore, is around
1,361, the number of lexical entries without those never-seen
lexical entries.

2When parsing fails, precision and recall are evaluated, al-
though nothing is output by the parser; i.e., recall decreases
greatly.

and Curran, 2004b; Miyao and Tsujii, 2005). The
experiments were conducted on an AMD Opteron
server with a 2.4-GHz CPU. Section 22 of the Tree-
bank was used as the development set, and the per-
formance was evaluated using sentences of≤ 100
words in Section 23. The performance of each
model was analyzed using the sentences in Section
24 of ≤ 100 words. Table 3 details the numbers
and average lengths of the tested sentences of≤ 100
words in Sections 23 and 24, and the total numbers
of sentences in Sections 23 and 24.

The parsing performance for Section 23 is shown
in Table 4. The upper half of the table shows the per-
formance using the correct POSs in the Penn Tree-
bank, and the lower half shows the performance us-
ing the POSs given by a POS tagger (Tsuruoka and
Tsujii, 2005). LF and UF in the figure are labeled
F-score and unlabeled F-score. F-score is the har-
monic mean of precision and recall. We evaluated
our model in two settings. One is implemented with
a narrow beam width (‘our model 1’ in the figure),
and the other is implemented with a wider beam
width (‘our model 2’ in the figure)3. ‘our model

3The beam thresholding parameters for ‘our model 1’ are
α0 = 10, ∆α = 5, αlast = 30, β0 = 5.0, ∆β = 2.5, βlast =
15.0, δ0 = 10, ∆δ = 5, δlast = 30, κ0 = 5.0, ∆κ =
2.5, κlast = 15.0, θ0 = 6.0, ∆θ = 3.5, andθlast = 20.0.
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Figure 3: F-score versus average parsing time for sentences in Section 24 of≤ 100 words.

1’ was introduced to measure the performance with
balanced F-score and speed, which we think appro-
priate for practical use. ‘our model 2’ was intro-
duced to measure how high the precision and re-
call could reach by sacrificing speed. Our mod-
els increased the parsing accuracy. ‘our model 1’
was around 2.6 times faster and had around 2.65
points higher F-score than Miyao and Tsujii (2005)’s
model. ‘our model 2’ was around 2.3 times slower
but had around 2.9 points higher F-score than Miyao
and Tsujii (2005)’s model. We must admit that the
difference between our models and Ninomiya et al.
(2006)’s model 3 was not as great as the differ-
ence from Miyao and Tsujii (2005)’s model, but ‘our
model 1’ achieved 0.56 points higher F-score, and
‘our model 2’ achieved 0.8 points higher F-score.
When the automatic POS tagger was introduced, F-
score dropped by around 2.4 points for all models.

We also compared our model with Matsuzaki et
al. (2007)’s model. Matsuzaki et al. (2007) pro-

The termsκ andδ are the thresholds of the number of phrasal
signs in the chart cell and the beam width for signs in the chart
cell. The termsα andβ are the thresholds of the number and
the beam width of lexical entries, andθ is the beam width for
global thresholding (Goodman, 1997). The terms with suffixes
0 are the initial values. The parser iterates parsing until it suc-
ceeds to generate a parse tree. The parameters increase for each
iteration by the terms prefixed by∆, and parsing finishes when
the parameters reach the terms with suffixes last. Details of the
parameters are written in (Ninomiya et al., 2005). The beam
thresholding parameters for ‘our model 2’ areα0 = 18, ∆α =
6, αlast = 42, β0 = 9.0, ∆β = 3.0, βlast = 21.0, δ0 =
18, ∆δ = 6, δlast = 42, κ0 = 9.0, ∆κ = 3.0, κlast = 21.0.
In ‘our model 2’, the global thresholding was not used.

posed a technique for efficient HPSG parsing with
supertagging and CFG filtering. Their results with
the same grammar and servers are also listed in the
lower half of Table 4. They achieved drastic im-
provement in efficiency. Their parser ran around 6
times faster than Ninomiya et al. (2006)’s model 3,
9 times faster than ‘our model 1’ and 60 times faster
than ‘our model 2.’ Instead, our models achieved
better accuracy. ‘our model 1’ had around 0.5 higher
F-score, and ‘our model 2’ had around 0.8 points
higher F-score. Their efficiency is mainly due to
elimination of ungrammatical lexical entries by the
CFG filtering. They first parse a sentence with a
CFG grammar compiled from an HPSG grammar,
and then eliminate lexical entries that are not in the
parsed CFG trees. Obviously, this technique can
also be applied to the HPSG parsing of our mod-
els. We think that efficiency of HPSG parsing with
our models will be drastically improved by applying
this technique.

The average parsing time and labeled F-score
curves of each probabilistic model for the sentences
in Section 24 of≤ 100 words are graphed in Fig-
ure 3. The graph clearly shows the difference of
our model and other models. As seen in the graph,
our model achieved higher F-score than other model
when beam threshold was widen. This implies that
other models were probably difficult to reach the F-
score of ‘our model 1’ and ‘our model 2’ for Section
23 even if we changed the beam thresholding param-
eters. However, F-score of our model dropped eas-
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ily when we narrow down the beam threshold, com-
pared to other models. We think that this is mainly
due to its bad implementation of parser interface.
The n-gram reference distribution is incorporated
into the kernel of the parser, but the n-gram fea-
tures and a maximum entropy estimator are defined
in other modules; n-gram features are defined in a
grammar module, and a maximum entropy estimator
for the n-gram reference distribution is implemented
with a general-purpose maximum entropy estimator
module. Consequently, strings that represent the n-
gram information are very frequently changed into
feature structures and vice versa when they go in and
out of the kernel of the parser. On the other hand, Ni-
nomiya et al. (2006)’s model 3 uses the supertagger
as an external module. Once the parser acquires the
supertagger’s outputs, the n-gram information never
goes in and out of the kernel. This advantage of Ni-
nomiya et al. (2006)’s model can apparently be im-
plemented in our model, but this requires many parts
of rewriting of the implemented parser. We estimate
that the overhead of the interface is around from 50
to 80 ms/sentence. We think that re-implementation
of the parser will improve the parsing speed as esti-
mated. In Figure 3, the line of our model crosses the
line of Ninomiya et al. (2006)’s model. If the esti-
mation is correct, our model will be faster and more
accurate so that the lines in the figure do not cross.
Speed-up in our model is left as a future work.

5 Conclusion

We proposed a probabilistic model in which su-
pertagging is consistently integrated into the prob-
abilistic model for HPSG. In the model, the n-gram
reference distribution is simply defined as the prod-
uct of the probabilities of selecting lexical entries
with machine learning features of word and POS n-
gram as defined in the CCG/HPSG/CDG supertag-
ging. We conducted experiments on the Penn Tree-
bank with a wide-coverage HPSG parser. In the ex-
periments, we compared our model with the prob-
abilistic HPSG with a unigram reference distribu-
tion (Miyao and Tsujii, 2005) and the probabilistic
HPSG with supertagging (Ninomiya et al., 2006).
Though our model was not as fast as Ninomiya
et al. (2006)’s models, it achieved the highest ac-
curacy among them. Our model had around 2.65

points higher F-score than Miyao and Tsujii (2005)’s
model and around 0.56 points higher F-score than
the Ninomiya et al. (2006)’s model 3. When we sac-
rifice parsing speed, our model achieved around 2.9
points higher F-score than Miyao and Tsujii (2005)’s
model and around 0.8 points higher F-score than Ni-
nomiya et al. (2006)’s model 3. Our model achieved
higher F-score because parameters for phrase struc-
tures in our model are trained with the supertagging
probabilities, which are not in other models.
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