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Abstract

An efficient parsing technique for HPSG is pre-
sented. Recent research has shown that supertag-
ging is a key technology to improve both the speed
and accuracy of lexicalized grammar parsing. We
show that further speed-up is possible by elimi-
nating non-parsable lexical entry sequences from
the output of the supertagger. The parsability of
the lexical entry sequences is tested by a technique
called CFG-filtering, where a CFG that approxi-
mates the HPSG is used to test it. Those lexical
entry sequences that passed through the CFG-filter
are combined into parse trees by using a simple
shift-reduce parsing algorithm, in which structural
ambiguities are resolved using a classifier and all
the syntactic constraints represented in the original
grammar are checked. Experimental results show
that our system gives comparable accuracy with
a speed-up by a factor of six (30 msec/sentence)
compared with the best published result using the
same grammar.

1 Introduction

Deep syntactic analysis by lexicalized grammar parsing of-
fers a solid basis for intelligent text processing, such as
question-answering, text mining, and machine translation. In
those tasks, however, a large amount of text has to be pro-
cessed to build a useful system. One of the main difficulties
of using lexicalized grammars for such large-scale applica-
tions is the inefficiency of parsing caused by complicated data
structures used in such grammars.

Recent research showed the importance of supertagging
for the speed, as well as the accuracy, of lexicalized gram-
mar parsing [Clark and Curran, 2004; Ninomiya et al., 2006].
Supertagging is a tagging process where lexical entries are
assigned to the words in the input sentence [Bangalore and
Joshi, 1999]. In lexicalized grammars, a lexical entry encodes
many constraints on how a word is combined with surround-
ing words or phrases. The parsing efficiency is therefore in-
creased by supertagging because it makes the search space
explored by the parser much narrower.

The current accuracy of the supertagger is, in general, not
sufficient to use it as a single-tagger, which assigns only one

lexical entry for each word, because the number of supertags
is generally large (more than 1000 in our case) and only one
or two tagging errors in a sentence will cause a parse failure
in many cases. In previous research [Clark and Curran, 2004;
Ninomiya et al., 2006], the problem is overcome by assign-
ing several supertags to each word in a sentence, i.e., multi-
supertagging; the supertagger initially assigns only a small
number of lexical entries to each word and the number of
lexical entries is gradually increased until the parser finds a
successful parse. In short, the parser ‘takes over’ a part of the
supertagger’s task and resolves a certain amount of the lexical
ambiguity by itself to avoid parse failures.

In this paper, we show that, by making the supertagger
more powerful, the workload of the parser can be further re-
duced and the overall system becomes more efficient. Specif-
ically, we combine the supertagger with a CFG that approxi-
mates the original lexicalized grammar, to enumerate maybe-
parsable supertag assignments in the order of their scores
given by the supertagger. We say a supertag sequence is
maybe-parsable if the sequence is parsable by the approxi-
mating CFG. The most time-consuming part of the enumer-
ation algorithm is parsing of the input sentence with the ap-
proximating CFG. However, we can do this CFG parsing ef-
ficiently because the CFG is generally sparse, i.e., the combi-
nation of symbols that appear in a CF-rule is highly restricted.

The enumerated supertag sequences are parsed by an
HPSG parser one by one, until a successful parse is obtained.
Though the enumerated supertag sequences are not necessar-
ily parsable by the original HPSG, we observed in the exper-
iments that the parser finds a successful parse within only a
few maybe-parsable supertag sequences for most sentences.

The biggest advantage of our approach is that the HPSG
parser used in the last stage of the system, which is the most
computationally demanding part in the previous approach,
can now be replaced by a simpler and more efficient parsing
algorithm. Our HPSG parser is implemented as a classifier-
based, deterministic shift-reduce parser that is guided by a
CFG-forest. The CFG-forest is created by the approximating
CFG, and it approximates the HPSG-forest that would be ob-
tained if the input supertag sequence were fully parsed with
the HPSG. We do not need to keep many hypothetical sub-
analyses represented by complex feature structures, as in the
chart parsers used in the previous approach, since the input to
the HPSG parser is single-supertagged and also we can know
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almost surely which sub-analysis grows into a well-formed
parse tree by referring to the CFG-forest.

2 Background

2.1 Head-driven Phrase Structure Grammar

HPSG [Pollard and Sag, 1994] is a linguistic theory based
on the lexicalized grammar formalism. An instance of HPSG
grammar mainly consists of two parts: a small number of
rule schemata and a large number of lexical entries. The rule
schemata represent general grammatical constraints, while
the lexical entries in the lexicon express word-specific char-
acteristics. In HPSG, both lexical entries and phrasal con-
stituents are represented by typed feature structures called
signs and applications of the rule schemata are implemented
by unification of signs and schemata.

Figure 1 presents an example of HPSG parsing for the sen-
tence “I like it.”1 First, three lexical entries are selected from
ones associated with each word in the lexicon. Then, the
lexical entries of “like” and “it” are combined by applying
the Head-Complement schema to them and then the resultant
phrasal sign of the verb phrase “like it” is combined with the
lexical entry of “I” by the Subject-Head schema.

Variations of syntactic constructions allowed for a word are
represented by different lexical entries associated to the word
in the lexicon. These variations include not only ones with
different subcategorization frames (e.g., transitive and in-
transitive) but also ‘transformational’ variations such as pas-
sivization and wh-extraction. The form of a parse tree con-
structed upon a word sequence is hence highly constrained
once a lexical entry is selected for each word.

2.2 Supertagging

Supertagging is a process where the words in the input sen-
tence are tagged with ‘supertags.’ In our case, a supertag is a
lexical template, which is a common structure shared among
lexical entries for different words.

Supertagging can be formulated as a sequence labeling task
and several types of techniques have been applied to it. We
selected a simple approach proposed by Clark [2002], which
uses a maximum entropy classifier. The conditional probabil-
ity of a supertag sequence t = t1 . . . tn given a (POS-tagged)
sentence s is calculated as:

P (t|s) =

n∏

i=1

P (ti|s) =

n∏

i=1

1

Zi

exp (W · Φ(s, ti, i)) (1)

where W is a vector of feature weights, Φ(s, ti, i) is the fea-
ture vector, and Zi is a normalization constant.

As is clear from the equation above, the supertagger ne-
glects the parsability of the supertag sequence. We empiri-
cally show that, by combining a CFG-filter with the supertag-
ger, it is possible to enumerate supertag sequences which are
most of the case parsable, in the order of the probability de-
fined in Eq.(1), with only a small additional processing time.

1Feature structures used in the example are very simplified ones;
a much more complicated grammar is used in the experiments.

n1

t1

I

n2

t2

like

t3

it

Figure 2: Analysis by the approximating CFG

2.3 CFG-filtering

CFG-filtering [Kiefer and Krieger, 2000; Torisawa et al.,
2000] is a parsing technique for unification-based grammars.
In HPSG parsing based on CFG-filtering, an input sentence
is first parsed by a CFG that approximates the original HPSG
and then the CFG-parsing is ‘replayed’ using the HPSG. The
CFG parsing in the first stage is much faster than normal
HPSG parsing since the unification operations are replaced
by identity checking of atomic symbols of CFG, which is a
much more faster operation than unification.

The non-terminal symbols N , the terminal symbols T , and
the set of CF-rules R in the approximating CFG respectively
represent (abstracted) phrasal signs, (abstracted) lexical en-
tries, and instantiations of the rule schemata. For example, the
CFG tree in Figure 2, which is an analysis of the sentence “I
like it.” by an approximating CFG, corresponds to the HPSG
parse tree in Figure 1. In Figure 2, n1, n2, t1, t2, and t3
are non-terminal and terminal symbols of the approximating
CFG which represent feature structures at the corresponding
positions in the HPSG parse tree.

The number of possible phrasal signs in an HPSG is in-
finite in general. To approximate the HPSG by a CFG, we
thus need to abstract away several parts of the phrasal signs
to keep the number of abstracted signs finite. The abstraction
of the feature structures is specified by means of a restrictor
[Shieber, 1985] on the feature structures; a restrictor takes a
feature structure and overwrites several feature values in it to
the most general values allowed for the features.

We use one of the algorithms proposed by Kiefer and
Krieger [2000] to approximate the HPSG. The algorithm
finds all possible abstracted phrasal signs by iteratively ap-
plying the schemata to abstracted signs that have been found
so far. A sketch of the algorithm is as follows:

1: Restrict all the lexical entries and obtain the set of termi-
nal symbols T

2: i← 0; Ni ← T
3: while Ni �= Ni+1 do
4: Ni+1 ← Ni

5: for all n1, n2 ∈ Ni do
6: for all schema s do
7: Apply s to n1 and n2 as daughters and obtain the

mother phrasal sign m
8: Restrict m to m′

9: if m′ /∈ Ni+1 then
10: Ni+1 ← Ni+1 ∪ {m

′}
11: R← R ∪ {m′ → n1n2}
12: N ← Ni

The restrictor defines a many-to-one mapping from the set
of supertags (i.e., lexical entries) to the set of terminal sym-
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Figure 1: HPSG parsing

bols T . We however pretend there is a one-to-one mapping
between these two sets by allowing multiple occurrences of
the same terminal symbols in T , if necessary, and remember-
ing which supertag was mapped to which terminal symbol.
In the rest of the paper, we assume such a one-to-one relation
and treat terminal symbols and supertags interchangeably.

An important property of the CFG approximation is that
the language of the obtained CFG is a superset of the set of
parsable supertag sequences. In other words, if a supertag
sequence is not parsable by the CFG, it is also not parsable
by the HPSG. We use this property to eliminate non-parsable
supertag sequences from the output of the supertagger.

3 An efficient multi-stage parsing algorithm

for HPSG

Our parsing system takes as input a POS-tagged sentence,
(〈w1, p1〉 , . . . , 〈wn, pn〉) where wi is a word and pi is a POS
tag, and outputs an HPSG parse tree. The algorithm is as
follows:

1: for all 〈wi, pi〉 in the input sentence do
2: Assign scores by the supertagger to supertags associ-

ated to wi in the lexicon
3: j ← 0
4: repeat
5: j ← j + 1
6: t← j-th best maybe-parsable supertag sequence
7: Parse t with the approximating CFG
8: Select an HPSG parse tree by the disambiguator, using

the CFG forest made in the above step
9: until a well-formed HPSG parse tree is obtained

10: return the selected HPSG parse tree

The approximating CFG is generally not equivalent to the
HPSG, and therefore, a maybe-parsable supertag sequence
might not be parsable by the HPSG. In such cases, the dis-
ambiguator at line 8 fails to find a well-formed HPSG parse
tree and another supertag sequence is tried in the next iter-
ation. The disambiguator might fail even when the maybe-
parsable sequence is truly parsable by the HPSG because the
CFG-forest created at line 7 may contain a tree not licensed
by the HPSG and the disambiguator might mistakenly try to
reproduce such a tree with the HPSG. However, we found
such cases are empirically rare and thus decided to simply try
the next supertag sequence in such cases. The rest of this sec-

tion describes the algorithm of enumerating maybe-parsable
supertag sequences (line 6) and the disambiguator (line 8).

3.1 Enumeration of maybe-parsable supertag
sequences

The algorithm is based on Jiménez and Marzal’s algorithm
[Jiménez and Marzal, 2000], which enumerates, given a
weighted CFG and an sentence, the N -best parse trees for
the sentence in order of their weights. In their algorithm, the
input sentence is first parsed with the weighted CFG using the
CKY algorithm and then the N -best parse trees are obtained
by enumerating the top N derivations of the root edge, i.e.,
the edge which spans the whole input and whose label is the
start symbol. The N -best derivations of an edge e are recur-
sively obtained by combining the N -best sub-derivations of
the sub-edges of e and selecting the top N derivations from
the combinations. In reality, it is not necessary to calculate all
the N -best derivations for every edge in the chart because the
N -best sub-derivations can be enumerated in a ‘lazy’ manner.
See their paper for further details on their algorithm.

To obtain the N -best parsable supertag sequences, instead
of the N -best parse trees, we modify Jiménez and Marzal’s
algorithm as follows. Our algorithm takes as input a sentence
w = (w1, w2, . . . ) and a list of scored supertags for each
word, {〈tij , sij〉}, where tij is the j-th scored supertag for
wi and sij is the log-probability of tij . Given the input and
the approximating CFG, Ga, we make a weighted CFG such
that each CF-rule in Ga has a weight zero and each ‘leaf rule’
tij → wi has a weight sij . Note that the score of a deriva-
tion defined by the weighted CFG equals the log-probability
of the supertag sequence on the fringe of the derivation. The
fringe of a derivation is the sequence of pre-terminals (i.e.,
tijs) of the tree of the derivation. In the first phase of the al-
gorithm, we parse the input sentence with the weighted CFG
by using the CKY algorithm. In the second phase of the al-
gorithm, we enumerate the N -best fringes of the derivations
of the root edge. Just as in Jiménez and Marzal’s algorithm,
we can recursively obtain the N -best fringes for an edge e by
concatenating the N -best sub-fringes for the sub-edges of e
and selecting the top N fringes from them in a lazy manner.

We made several modifications to the basic algorithm de-
scribed above in order to make it more efficient. The first
is that we replace the CKY algorithm used in the first step
of the algorithm with an agenda-based best-first parsing al-
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gorithm. We further split the agenda-based parsing into two
stages. The first stage of the best-first parsing stops when a
root edge is found. In most cases, the first maybe-parsable su-
pertag sequence is truly parsable with the original HPSG. In
such cases, we need only the best-scored parse tree since the
first maybe-parsable supertag sequence is its fringe. When
the second supertag sequence is requested, we start the sec-
ond stage, in which the best-first parsing is continued until all
the edges scored greater than (α − θ) are added to the chart,
where α is the score of the best-scored parse tree and θ is a
user-defined threshold. At the end of the second stage, any
edge used in a parse tree with a score greater than (α − θ) is
stored in the chart and therefore we can find all the maybe-
parsable sequences scored greater than (α − θ) without fully
parsing the input sentence.

Another modification is that we set the weight of the leaf
rule tij → wi to (sij−si1) instead of sij . Note that this mod-
ification does not alter the supertag sequences enumerated by
the algorithm or their orders. By this modification, generation
of edges with small scores is suppressed for the same reason
as in A∗-parsing [Klein and Manning, 2003].

The last modification is that, before the agenda-based pars-
ing starts, we discard all the supertags for word wi whose
scores are less than si1− β, where β is a user-defined thresh-
old. By this modification, we might lose some maybe-
parsable sequences in which those discarded supertags ap-
pear. In the experiments, however, we found that the accu-
racy of parse trees created upon such supertag sequences with
low scores is generally low. We therefore decided to use this
thresholding with β for the efficiency of the enumeration.

3.2 Disambiguation by shift-reduce parsing with a
guiding forest

We use an algorithm based on deterministic shift-reduce pars-
ing to select an HPSG parse tree from those that can be
constructed upon a given supertag sequence. Although we
could use other disambiguation algorithms, the deterministic-
parser-like algorithm is well suited to our framework because
there is almost no need to keep multiple hypothetical sub-
analyses (as in bottom-up chart parsing algorithms) to avoid
search failure, since the supertag sequence given to the parser
is maybe-parsable and we also have a CFG-forest on the su-
pertag sequence, which guides the shift-reduce parser just like
an LR-table with infinite look-ahead.

Deterministic, classifier-based approaches to disambigua-
tion have been applied to dependency parsing (e.g., [Yamada
and Matsumoto, 2003; Nivre and Scholz, 2004]) and CFG
parsing (e.g., [Sagae and Lavie, 2005]). Note that we can-
not apply these algorithms to HPSG parsing in a straightfor-
ward manner since they cause many parse failures for highly
constrained grammars such as HPSG; to avoid parse failures,
we need the approximating CFG for filtering the supertag se-
quences and for making the guiding CFG forest.

The disambiguator has two components, a stack of phrasal
and lexical signs, S, and a queue of lexical signs (i.e., su-
pertags), Q. The input to the disambiguator is a POS-
tagged sentence, a maybe-parsable supertag assignment t =
(t1, t2, . . . ), and a forest, f , created by parsing t with the

approximating CFG, using the CKY algorithm. The disam-
biguation algorithm is as follows:

1: S ← empty stack; Q← (t1, t2, . . . )
2: while Q is not empty or length(S) > 1 do
3: if Γ(S, f) = φ then
4: return fail
5: a← argmax

a∈Γ(S,f)

W · Φ(S, Q, a)

6: 〈S, Q〉 ← apply(a, 〈S, Q〉)
7: r ← pop(S)
8: return r

In the algorithm, a denotes a parser action, Γ(S, f) is the set
of possible parser actions given the stack S and the forest
f , W is the vector of feature weights, and Φ(S, Q, a) is the
feature vector. There are two types of parser action:

SHIFT: it pops a lexical sign from Q and pushes it into S.

APPLY SCHEMA X: it applies an n-ary schema X to the
top n elements of S and replaces them with the resulting
mother phrasal sign.

For example, the HPSG parse tree in Figure 1 is constructed
by the following sequence of actions: SHIFT, SHIFT, SHIFT,
APPLY SCHEMA Head Complement,
APPLY SCHEMA Subject Head. The weight vector W is
obtained with the averaged-perceptron algorithm [Collins and
Duffy, 2002] with the polynomial kernel of degree 2.

The set of possible actions Γ(S, f) is determined so that
the parser never ‘goes out of the forest.’; Γ(S, f) is cre-
ated by first mapping each element in S, i.e., signs of sub-
trees, to its corresponding node in f , then selecting actions
which can lead to at least one complete CFG parse tree in
f that includes all the nodes to which some stack elements
are mapped, and finally eliminating from them any such AP-
PLY SCHEMA Xs whose schema X is not applicable to the
stack elements on the top of S.

4 Experiments

In this section, we first give a brief summary of the specific
HPSG grammar used in the experiments and also describe the
test/training data we used. We then give implementation de-
tails of the supertagger, the CFG-filter, and the disambiguator.
Finally the experiments and their results are discussed.

4.1 Enju grammar

We used Enju version 2.12, an HPSG grammar for English
[Miyao et al., 2005]. The design of the grammar basically
follows the definition of [Pollard and Sag, 1994]. Twelve
schemata are defined in the grammar (9 binary schemata and
3 unary schemata). The lexicon of the grammar was extracted
from Sections 02-21 of the Penn Treebank [Marcus et al.,
1994] (39,832 sentences). The grammar consists of 2,253
lexical entries for 9,567 words.

A program that converts the Penn Treebank into an HPSG
treebank is also distributed with the grammar. We used it to
make the training and test data for the experiment. A standard
training/development/test split of the data is used; i.e., we

2http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html
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description feature templates

surrounding words w
−1, w0, w1

surrounding POS tags p
−2, p−1, p0, p1, p2, p3

w
−1w0, w0w1, p

−1w0, p0w0, p1w0,
combinations p0p1p2p3, p

−2p−1p0, p
−1p0p1,

p0p1p2, p
−2p−1, p

−1p0, p0p1, p1p2

Table 1: Features used in the supertagger

used the HPSG treebanks created from Section 02-21/22/23
of the Penn Treebank as training/development/test data.

4.2 Implementation details

HPSG supertagger

Table 1 lists the features used in our supertagger. In the ta-
ble, px and wx respectively denote a POS tag and a word at
relative position x from the target word. We used the same
feature set as one used in Ninomiya et al.’s HPSG supertag-
ger so that the comparison of our system and theirs becomes
more meaningful. The number of supertags is 2,253 (i.e., the
number of lexical entries). 3

CFG-filter

We created an approximating CFG from the Enju grammar by
Kiefer and Krieger’s algorithm. Examples of the features we
restricted in the approximation are PHON (phonology fea-
ture), SYNSEM:LOCAL:CONT (semantic structures of the
phrase), and SYNSEM:LOCAL:CAT:HEAD:AGR (agree-
ment feature). The CFG contains 1,241 terminal symbols,
20,647 non-terminal symbols, and 458,988 rules.

Disambiguator

Table 2 lists features used in the disambiguator.4 Features 1-
4 are adaptations of the features used in Sagae and Lavie’s
CFG shift-reduce parser [Sagae and Lavie, 2005], and fea-
tures 5-9 are adaptations of ones used in Miyao and Tsujii’s
CKY-style HPSG parser [Miyao and Tsujii, 2005]. Feature
10 includes several types of valency constraint read off from
the phrasal/lexical signs. For example, from a lexical sign for
a ditransitive usage of “give”, we extract two features, “sub-
ject=NP” and “complement=NP NP”.

4.3 Experimental results

We evaluated the speed and the accuracy of the proposed
method on sentences in the test data of ≤ 40 words (2,162
sentences) and≤ 100 words (2,299 sentences). We measured
the accuracy of the parse results by the precision (LP) and re-
call (LR) of the (labeled) predicate-argument relations output
by the parser. See [Miyao and Tsujii, 2005] for details of the
definition of the predicate-argument relations. The F1 score

3Many of them do not, however, appear in the training treebank.
The ‘effective’ size of the tag set is thus around 1,300 since the rest
of supertags, which do not appear in the training data, are assigned
very low probabilities by the supertagger and hence rarely used.

4S(i) and Q(i) denote i-th elements from the top of the stack and
the queue. S(n).left dep (resp. S(n).right dep) denotes the most re-
cently found lexical dependent of the head word of S(n) that is to the
left (resp. right) of S(n)’s head; S(n).lmost pos (S(n).rmost pos)
denotes the POS tag of the left-most (right-most) word of S(n).

1. surface form of the head word of x
2. POS tag of the head word of x
3. lexical template of the head word of x

4. phrasal category of x (e.g., S, NP, NX)

1-4 are for x ∈

8<
:

S(0), . . . , S(3), Q(0), . . . , Q(3),
S(0).left dep, S(0).right dep,
S(1).left dep, S(1).right dep

9=
;

5. distance between head words of S(0) and S(1)
6. whether a comma exists between S(0) and S(1)
7. whether a comma exists inside S(0) or S(1)
8. pair of S(1).rmost pos and S(0).lmost pos
9. number of words dominated by S(0) and S(1)
10. valence features of S(0), S(1), Q(0), and Q(1)

Table 2: Features used in the parser

is the harmonic mean of LP and LR. All the timing informa-
tion was collected on an AMD Opteron server with a 2.4-GHz
CPU. The two parameters, β and θ, were manually tuned us-
ing the development set; β = log(1000) and θ = log(100).

Table 3 lists the results of the parsing experiments on the
test set. The table also lists several reported results on the
same test set by other HPSG parsers with the same grammar:
Ninomiya et al.’s parser is the model III in [Ninomiya et al.,
2006], which is the supertagger-based HPSG parser briefly
explained in Section 1. Miyao and Tsujii’s parser is a CKY-
style HPSG parser [Miyao and Tsujii, 2005]5. Both parsers
use maximum entropy models for the disambiguation, and the
main difference between them is the inclusion of a supertag-
ger by Ninomiya et al.’s parser. The higher efficiency of our
approach is clear from the table: out system runs around six
times faster than Ninomiya et al.’s parser with comparable
accuracy.

On the test set of the sentences ≤ 100 words, our method
found a well-formed parse for 97.1% of the sentences.6 In
preliminary experiments on the development set, we found
the rate of successfully parsed sentences reached nearly 100%
when we chose larger values for β. However, for such set-
tings, average parse time significantly increased and the F1

score did not improve because while the recall slightly im-
proved, the precision slightly deteriorated. For example, with
β = log(105), 99.6% of the sentences in the development
set got a parse with an average parse time of 52.9 ms. This
fact means that when the first maybe-parsable supertag se-
quence is assigned very low probability by the supertagger,
the enumeration algorithm needs to generate many edges un-
til it finds the sequence, but the HPSG parse created on such
a sequence is not so accurate.

Table 4 shows the cumulative percentages of the sentences
on which the parser found a well-formed parse within a cer-
tain number of maybe-parsable supertag sequences. This ex-
periment was done on the development set and with the same
parameter values as the above experiment. For about 95%
of the sentences, the first maybe-parsable supertag sequence

5Enju parser (ver2.1). http://www-tsujii.is.s.u-tokyo.ac.jp/enju
6For those sentences on which the parser failed, we collected par-

tial parse results by applying the disambiguator (without a guiding
forest) on the 1-best supertag sequence and evaluated the predicate-
argument relations identified in those partial parse results.
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Sentences ≤ 40 words Sentences ≤ 100 words
Parsers LP LR F1 Avg. Time LP LR F1 Avg. Time

this paper 87.15 86.65 86.90 25.9 ms 86.93 86.47 86.70 29.6 ms
Ninomiya et al. [2006] 87.66 86.53 87.09 155 ms 87.35 86.29 86.81 183 ms
Miyao and Tsujii [2005] 85.33 84.83 85.08 509 ms 84.96 84.25 84.60 674 ms

Table 3: Results of parsing on Section 23

# of invocations 1 ≤5 ≤10 ≤20 ≤111

cumulative% 94.89 96.90 97.14 97.32 97.63

Table 4: Number of enumerated supertag sequences until a
successful parse

Sub-module Avg. time (%)

POS tagging 7.4 ms (27%)
Supertagging 7.0 ms (26%)
Enumeration of supertag sequences 3.4 ms (12%)
CKY parsing of a supertag sequence 0.6 ms (2.3%)
Disambiguation by the HPSG parser 7.7 ms (28%)
other 1.9 ms

total 28 ms (100%)

Table 5: Breakdown of the average processing time

was truly parsable with the HPSG and more than five invoca-
tions of the HPSG parser were needed for only 0.7% of the
sentences.7 For any failed sentences, the enumerator returned
no maybe-parsable supertag sequences, i.e, the CFG-parser
failed on those sentences. These observations mean that the
CFG approximation was a fairly tight one, and hence, the
number of ‘unfruitful’ invocations of the HPSG parser, which
do not give a well-formed parse tree, was kept small.

Table 5 shows a breakdown of the average processing time
on the development set. The table suggests that our approach
significantly reduced the ‘workload’ of the HPSG parser by
its small overhead for the enumeration of maybe-parsable
supertag sequences; the processing time used in the HPSG
parser is now very close to that for POS tagging.
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