
Move Prediction in Go with the Maximum Entropy Method

Nobuo Araki∗, Kazuhiro Yoshida∗, Yoshimasa Tsuruoka† and Jun’ichi Tsujii∗†‡
∗ Graduate School of Information Science and Technology, The University of Tokyo

ark@is.s.u-tokyo.ac.jp, kyoshida@is.s.u-tokyo.ac.jp,tsujii@is.s.u-tokyo.ac.jp
† School of Computer Science, The University of Manchester

yoshimasa.tsuruoka@manchester.ac.uk
‡ NaCTeM (National Centre for Text Mining)

Abstract— We address the problem of predicting moves in
the board game of Go. We use the relative frequencies of local
board patterns observed in game records to generate a ranked
list of moves, and then apply the maximum entropy method
(MEM) to the list to re-rank the moves. Move prediction is the
task of selecting a small number of promising moves from all
legal moves, and move prediction output can be used to improve
the efficiency of the game tree search. The MEM enables us
to make use of multiple overlapping features, while avoiding
problems with data sparseness. Our system was trained on
20000 expert games and had 33.9% prediction accuracy in 500
expert games.

Keywords: maximum entropy method, board games, Go,
move prediction, re-ranking

I. INTRODUCTION

In Go1, the size of the board is usually 19 × 19, and
the player can place a stone on most of the empty spaces
(i.e, those without stones). Therefore, as there are too many
legal places to apply a simple Minimax search algorithm
to a game tree search in Go, we need to select a small
number of moves2 from all legal moves (forward pruning)
while searching the game tree. The prediction of moves is a
way to perform such selection. Move prediction is ranking all
legal places by the probabilities that experts (strong human
players) will select the moves. Accurate move prediction
routines can be used for forward pruning because experts
select a small number of promising moves to think deeply
(they seem to perform forward pruning unconsciously).

We used the maximum entropy method (MEM) to predict
moves.

There have been several previous studies on predicting
moves in Go. Bouzy and Chaslot [2] showed the first
40 moves could be accurately predicted using K-nearest-
neighbor patterns. Van der Werf et al. [3] attained 25%
accuracy3 using a neural network with various features. Stern
et al. [4] [5] achieved 34% accuracy with a simple system
of pattern matching trained on a number of expert games.4

1A great deal of information about Go can be found at
http://gobase.org/. [1]

2Move means placing a stone in Go.
3That is, the expert move was in the first rank in 25% of all the ranking

lists prepared by the system.
4The accuracy of 34% seems very low, but it is the top score in various

research. (The creator of Moyo Go Studio [6] claims that it attained 42%
accuracy, but he gave no explanation about what data was used for training
and evaluation.)

However, there is room for improvement in Stern et
al.’s work because multiple characteristics that have their
respective effects on move prediction are merged into a single
feature. Their method does not treat multiple characteristics
appropriately. We applied MEM in this research and used the
features of previous moves because it can manage multiple
features, and information on previous moves can be used
as an important feature for predicting moves.5 We used this
method of re-ranking the candidate moves and we achieved
an accuracy close to Stern et al.’s with a relatively small
amount of training data.

We first describe Stern et al.’s research on predicting
moves in Go in section II. This was the main basis of our re-
search. We also explain Zobrist hashing [7]. We then explain
MEM. Section III, explains our machine learning method
which uses MEM. Section IV presents the experiments. We
tuned a hyper parameter, changed the amount used for re-
ranking, and trained our system with 20000 matches of data.
We also had our system play with GnuGo [8]. Section V
discuss the utility of our system and future work.

II. BACKGROUND

We will first describe Stern et al.’s methods [4] [5],
on which our work is based. They used patterns of stone
positions as features for machine learning. As we also used
them, we will explain mainly these patterns. We will next
explain Zobrist hashing [7] that is used when comparing and
storing patterns. We will then describe MEM, which is used
to deal with multiple overlapping features.

A. Patterns in Stern et al.’s work

Pattern templates are first prepared in the pattern matching
algorithm proposed by Stern et al. Some of the templates they
used are shown in Fig. 1. (In Stern et al. [5], other pattern
templates were added, but we didn’t use them.) By using
these, patterns are extracted from expert game records. These
templates define the shape and range of patterns in stone
position. There is an example of a pattern being extracted
from a game record in Fig. 2. A pattern is represented by
{‘black’, ‘white’, ‘empty’,or ‘out of board’} for each position
in the pattern. Patterns that are symmetrical, i.e. a set of
patterns which can be exactly matched by rotation, mirroring,

5Strong players usually select moves that maintain consistency and
previous moves are good clues to maintain consistency and predicting
moves.

189

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

Authorized licensed use limited to: The University of Manchester. Downloaded on February 9, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

1 2 3 4

5 6 7 8

The black square in each template is its center of the
template. This center is on the next-move candidate (details
are described in Section II-C) in pattern extraction. The
largest template, number 8, covers the whole board (only
part of the template is shown because of space limitations).

Fig. 1. Pattern templates used by Stern et al. [4]

W

B

E

E

E

E

E

W

E

E

E

E

O

This shows pattern extracted from the record of a game with
pattern template 1. ‘B’ means ‘black’, ‘W’ means ‘white’,
‘E’ means ‘empty’ (nothing placed on it yet), and ‘O’ means
‘out of board’.

Fig. 2. Example of pattern being extracted

color reversal or their combination should be treated as the
same pattern.

The patterns themselves are not used when comparing and
storing them, but their hash values are used to save time and
for storage. The hash values are calculated by 64 bit Zobrist
hashing [7], (details of this are described in section II-B)
where the symmetric patterns can be reduced to a single
hash value by choosing the minimum of hash values, i.e.,
by calculating a hash value for every symmetric pattern and
choosing the minimum.

Other features related to Go tactics and stone positions
that have been introduced above are treated as one pattern
in Stern et al.’s work [5], i.e., tactical features are converted
to 64 bit numbers and XORed to the hash value of the stone
positions.

W W B O

E B B O

E B E O

O O O O

0

1

2

3

0 1 2 3

Fig. 3. Example for Zobrist hashing

B. Zobrist hashing

Zobrist hashing [7] is a technique for creating hash keys,
usually from something like a Go position. It enables fast
comparing patterns of stone position. First, a table of random
values is created, with each position on the pattern having
a value associated with it. Next, the hash key is initialized
by 0. Then the values of the table, which corresponds to the
pattern, are XORed together to create the final hash key. For
example, the hash key calculation of Fig. 3 is like this:

1) Creating a table of random values

int table[4][4][4];
for (int i = 0; i < 4; i++){

//row index
for (int j = 0; j < 4; j++){
//column index
for (int k = 0; k < 4; k++){
//state index
table[i][j][k] = random();

}}}

2) Initialize a hash key

int hash_key = 0;

3) XORed together to create the final hash key

for (int i = 0; i < 4; i++){
//row index
for (int j = 0; j < 4; j++){
//column index
hash_key ˆ= table[i][j][at(i,j)];
//at(i,j) means a color at (i,j)

}}

(in this case,
const int B = 0, W = 1, E = 2, O = 3;
hash_key

ˆ= table[0][0][W]ˆtable[0][1][W]
ˆtable[0][2][B]ˆtable[0][3][O]
ˆtable[1][0][E]ˆtable[1][1][B]
ˆtable[1][2][B]ˆtable[1][3][O]
ˆtable[2][0][E]ˆtable[2][1][B]
ˆtable[2][2][E]ˆtable[2][3][O]

190

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Authorized licensed use limited to: The University of Manchester. Downloaded on February 9, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

ˆtable[3][0][O]ˆtable[3][1][O]
ˆtable[3][2][O]ˆtable[3][3][O];)

This method has several advantages. The most important
one on the Stern’s work and on our approach is that the
hash key can be updated incrementally. If only one point on
a pattern changes, just two XOR operations are necessary to
calculate the new hash key:

hash_key
ˆ= table[i][j][old]ˆtable[i][j][new];

The importance of this in this work is discussed in section
II-C.

C. Machine learning with patterns

Stern et al’s system was trained with 181000 matches of
game records of expert players. By using all the records, the
system first constructed a pattern dictionary and then learned
the scores of the patterns.

A dictionary of patterns was constructed by extracting
patterns from the training data whose centers were on the
actual experts’ moves, for each pattern template. This dic-
tionary contained patterns that had been selected by expert
players (placing a stone on the center). Only patterns that had
appeared more than once were included in the dictionary to
limit their number and to ensure generalization to unseen
positions.

The scores of the patterns were learned next. The learning
routine is as follows:

On every expert move,

1) For every position that is a legal move, extract the
largest pattern in the dictionary whose center is on that
position and whose stone positions match the board
configuration.

2) Train the system to classify the extracted pattern whose
center is on the actual expert move as ‘good’ and to
classify the other extracted patterns as ‘bad’.

In this routine, the advantage of Zobrist hashing (a hash
value can be incrementally updated, i.e., it can be calculated
with the previous hash value and the difference) plays an
important role in saving computational time when calculating
hash values. The algorithm that uses this advantage is as
follows:

1) Before the start of the game (no stones have been
placed on the board), calculate a hash value for each
position on the board, for each pattern template, and
for each symmetric pattern.

2) On every move, update the hash values whose pattern
have the position of the move in their own pattern
templates.

Using this algorithm, hash values can be obtained much
faster than directly calculating them for all patterns every
time.

In Stern et al.’s experiment, a full ranking model with ADF
and EP [9], and an independent Bernoulli model were used
as the prediction model.

D. Predicting expert moves

Expert moves can be predicted with the scores of patterns
obtained by the method in Section II-C as follows:

1) For every position that is a legal move, extract the
largest pattern in the dictionary whose center is on that
position and whose stone positions match the board
configuration.

2) Rank the legal moves by the score of the extracted
pattern whose center is on the position of each move.

E. Maximum entropy method

Binary feature functions such as in (1) are used for
Maximum Entropy Method (MEM) to estimate joint prob-
ability distribution model P (x, y) from the training data
{(x1, y1), (x2, y2), . . . , (xN , yN)},

F = {fi : (x, y) �−→ {0, 1}, i ∈ {1, 2, . . . , n}} (1)

Let C(x, y) be the number of appearances of (x, y), then
the relative frequency of (x, y) is:

P̃ (x, y) =
C(x, y)

N
. (2)

The probability distribution that is defined by P̃ (x, y) is
called the “empirical probability distribution”. The expec-
tation of feature fi defined by P̃ (x, y) is:

EP̃ [fi] =
∑

x,y

P̃ (x, y)fi(x, y). (3)

Also, the expectation of feature fi defined by model P (x, y)
is:

EP [fi] =
∑

x,y

P (x, y)fi(x, y). (4)

If model P (x, y) properly represents the characteristics of the
training data, EP̃ [fi] must be equal to EP [fi]. Therefore, the
following equation must be true.

∑

x,y

P (x, y)fi(x, y) =
∑

x,y

P̃ (x, y)fi(x, y) (5)

This is called a “constraint equation”.
In MEM, the most uniform distribution of those that

satisfy (5) is estimated. The uniformity is calculated using
the entropy, H(P):

H(P) = −
∑

x,y

P (x, y)logP (x, y) (6)

The set of models that satisfies (5) when estimating P (x, y)
by using fi(1 ≤ i ≤ n) is defined as:

P = {P |EP [fi] = EP̃ [fi], i ∈ {1, 2, . . . , n}} (7)

The estimated model maximizes entropy.

P ∗ = argmaxP∈PH(P) (8)

191

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Authorized licensed use limited to: The University of Manchester. Downloaded on February 9, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

Model P , which satisfies (8), can be represented as:

PΛ(x, y) =
1

ZΛ
exp (

∑

i

λifi(x, y)) and (9)

ZΛ =
∑

x,y

exp (
∑

i

λifi(x, y)) (10)

Λ = {λ1, . . . , λn} is a set of parameters of model P (x, y),
and λi is a weight of fi. ZΛ is the normalizing factor for∑

x,y PΛ(x, y) = 1.
In MEM with inequality constraints [10], (5) is alleviated

as:

Ai ≥ EP̃ [fi] − EP [fi] ≥ −Bi (Ai, Bi > 0) (11)

We used the “SS Maxent” library [11] in this research,
which is a simple C++ class library for maximum entropy
classification. In this library, Ai, Bi in (11) is:

Ai = Bi = W × 1
N

(W is a width factor). (12)

III. METHOD

When dealing with multiple characteristics that are not
independent, merging them into one feature is inappropriate
because it causes problems with data sparseness, i.e., it
treats two features that are almost the same but only one
characteristic is different as two completely separate features.

For example, in our experiment, we wanted to use the
characteristics of previous moves for machine learning. How-
ever, if we combine the characteristics of previous moves
and the current pattern of stone positions as one feature,
two situations that have the same current pattern but have
different previous moves will be treated as completely sepa-
rate situations. This is not efficient because some moves are
almost independent of the characteristics of previous moves
but only dependent on the current pattern of stone positions.

Therefore, we used MEM, which can manage multiple
overlapping features, while avoiding the problems of data
sparseness. However applying MEM to machine learning to
predict moves in the same way as Stern et al. [4] [5] has
a problem with lack of memory. Applying MEM to this
means that we have to store features on each legal place
on each actual expert move on each game in the training
data in the machine memory. If the features of one legal
place occupy 180 bytes6, the average number of moves in
one game is 250, and the amount of training data is 200007,
we need 180× 361+(361−250)

2 × 250× 20000 = 212.4GB of
machine memory merely to store the features. We therefore
used MEM for re-ranking, i.e., we used relative frequencies8

to generate a ranked list of moves, and then applied MEM
to the list to re-rank the moves.

We shuffled the order of the training data for learning9,
and divided them into two equally sized sets. We used one

6This is the amount in our experiment discussed in this paper.
7This is also the amount in our experiment discussed in this paper.
8Calculating relative frequencies is fast and consumes less memory.
9The bias in the two parts of the training data may have an adverse

influence on results because Go tactics change over time.

(data A) for preparing a pattern dictionary and for learning
relative frequencies, and the other (data B) for MEM.

The training phase is as follows:

1) Prepare a pattern (of stone positions, without tactical
characteristics) dictionary in the same way as in [4]
from data A.

2) Calculate the relative frequencies of the patterns using
data A.

3) Rank all legal moves by using data B utilizing the
relative frequencies and train the system with MEM
using the top n samples in the ranking.

The move-predicting phase is as follows:

1) Rank all legal moves using the relative frequencies.
2) Re-rank the top n moves in the ranking with the MEM

system.

The details on the training phase and move-predicting
phase are described in the following sections.

A. Learning relative frequencies

The algorithm for calculating the relative frequencies of
stone positions is as follows:

1) Construct the dictionary of the patterns of stone posi-
tions in the same way as in [4]. (We used eight pattern
templates in Fig. 1).

2) Prepare two counters, ‘used’ and ‘unused’ for each
pattern in the dictionary.

3) On every expert move,

a) For every legal-move position, extract the largest
pattern in the dictionary whose center is on that
position and whose stone positions match the
board configuration.

b) For each pattern extracted in (3a), if the center
of the pattern is the actual expert move, incre-
ment the ‘used’ counter of the pattern, otherwise,
increment ‘unused’.

4) Calculate the relative frequency of each pattern using
Laplace’s law10 as:

(‘used’ of the pattern) + 1
(‘used’ of the pattern) + (‘unused’ of the pattern) + 2

(13)

B. Learning with MEM

After the training described in Section III-A, our system
was trained with MEM as follows:

On each board configuration,

1) Rank all legal moves using the respective relative
frequencies of the largest patterns in the dictionary
whose centers are on the positions and whose stone
positions match the board configuration.

2) Use the top n rankings as training samples for MEM.
The features used for training are (See Fig. 4.):

10Laplace’s law is a discounting method and relative frequencies are
calculated with it as: P (Xi) = Ci+1

N+V
(i ∈ {1, . . . , V }) In this

experiment, V = 2.

192

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Authorized licensed use limited to: The University of Manchester. Downloaded on February 9, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

As the features of place α (gray stone), we used the pattern
around it, its coordinates, the patterns around the previous
moves (these patterns matched the board configuration when
the previous moves were played), and the relative coordinates
of the previous moves to α. Only one previous move is shown
in this figure as the features of α, but we actually used four
previous moves.

Fig. 4. Features used for MEM

• The largest pattern in the dictionary whose center
is on the current move and whose stone positions
match the current board configuration,

• The coordinates of the current move,
• The largest patterns in the dictionary whose cen-

ters are on the four previous moves and whose
stone positions match the board configuration at
the time the moves were played, and

• The relative coordinates of the four previous
moves to the current move.

The actual expert move is labeled as ‘good’, and the
others are labeled as ‘bad’.11

Finally, the MEM system is trained to divide ‘good’ and
‘bad’.

C. Predicting moves

All legal moves are first ranked using the respective
relative frequencies of the largest patterns in the dictionary
whose centers are on the positions and whose stone positions
match the board configuration to predict moves. Then, the
top n rankings are re-ranked by MEM. The MEM system
estimates probability P (‘good′|features) and moves are re-

11If a ‘good’ sample is not in the top n, add a ‘good’ sample to the top
n training samples.

TABLE I

TUNING OF WIDTH FACTOR

Width factor Rank 1 accuracy

0.0 27.03%
0.1 27.46%
0.2 27.67%
0.3 27.95%
0.4 28.02%
0.5 28.15%
0.6 28.21%
0.7 28.19%
0.8 28.20%
0.9 28.24%
1.0 28.20%

ranked by using it.12

IV. EXPERIMENT

We conducted our experiment using the records in the
GoGoD database [12].

A. Tuning hyper-parameter

We adjusted the width factor in MEM [10] by using
2000 matches as the training data and 500 matches as the
development data for evaluation. We divided the training data
into two equal sets. We used one to prepare the pattern
dictionary and learn the relative frequencies. We used the
other to learn with MEM. We used the top 20 for re-ranking.

The results are in Table I. A width factor of 0.9 appears
acceptable..

B. Changing amount used for re-ranking

We changed the amount, used for re-ranking the list
generated with relative frequencies, from 20 to 80. We
set the width factor to 0.9. We used 2000 matches as the
training data and 500 matches as the development data for
evaluation. We divided the training data into two equal sets.
We used one to prepare the pattern dictionary and learn
relative frequencies. We used the other to learn with MEM.

We also conducted an experiment with no re-ranking, i.e.,
all the training data were only used to prepare the pattern
dictionary and learn the relative frequencies.

The results are in Table II.13 The “0” column means that
there was no re-ranking.

At ranks 1, 5, and 10 the results with re-ranking yielded
better outcomes than those without re-ranking. However, for
the others, the results with re-ranking did not yield better
outcomes than those without re-ranking.

Increasing the amount used for re-ranking had a bad
influence on rank 1, but a good influence on ranks 10, 20,
40, and 60. However, the results with re-ranking only yielded
better results at rank 10 than those without re-ranking.

12The ‘features’ are the same as those that are used for MEM training
in Section III-B.

13“The cumulative density of rank x is y%” means that y% of all expert
moves are in the top x in the ranking by our system. The higher y% is, the
better the system is.

193

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Authorized licensed use limited to: The University of Manchester. Downloaded on February 9, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

TABLE II

CHANGING AMOUNT USED FOR RE-RANKING

Cumulative density
Rank 0 20 40 60 80

1 21.05% 28.24% 27.55% 26.93% 26.92%
5 46.19% 52.70% 52.91% 52.54% 52.85%
10 59.25% 61.68% 63.05% 62.52% 62.45%
20 72.43% 69.11% 72.58% 72.37% 71.91%
40 83.75% 79.85% 79.85% 81.38% 81.38%
60 88.62% 84.63% 84.63% 84.63% 85.85%
80 91.32% 87.53% 87.53% 87.53% 87.53%

TABLE III

USING 5000, 10000, 15000,AND 20000 TRAINING DATA

Cumulative density
Rank 5000 10000 15000 20000

1 31.04% 32.72% 33.73% 33.94%
5 56.54% 58.61% 59.81% 60.47%
10 65.56% 67.85% 68.94% 69.50%

Applying re-ranking with MEM was good for selecting
about 10 moves from the list generated with relative frequen-
cies. The amount that should be used for re-ranking depends
on the amount that will be used after the move is predicted
(i.e., if only the top 1 is necessary, re-ranking the top 20 is
good, but if the top 10 is necessary, re-ranking the top 40 is
good.).

C. Using 5000, 10000, 15000,and 20000 training data

Setting the width factor to 0.9, we carried out experiments
using 5000, 10000, 15000,and 20000 matches as the training
data and 500 matches as the test data. We divided the training
data into two equal sets. We used one to prepare the pattern
dictionary and learn the relative frequencies. We used the
other to learn with MEM. We used the top 20 for re-ranking.

The results are listed in Tables III and IV.
Compared with Stern et al. [4] who used 20000 matches as

the training data and 500 matches as the test data, our system
yielded better results in cumulative density at ranks 1, 5 and
10. However, our system was outperformed at rank 20. We
could not obtain better results than Stern et al. [5] who used
181000 matches for training, but we attained almost their
accuracy at rank 1.

The experiment using 20000 matches for training took
about 8.75 days14 and used about 16 GB of memory. More-
over, the expected increase in accuracy created by increasing
the amount of training data is very small (see Table III).
Therefore, we can say that using more than 20000 matches
for training data is not practical to attain greater accuracy.
We believe we need to use better features instead.

D. Match with GnuGo3.6 [8]

We had our system (trained with 20000 matches of data
described in section IV-C) play against GnuGo3.6 [8]. Our
system always selects moves ranked 1. The results are

14We used Intel(R) Xeon(R) 3.0 GHz machine.

TABLE IV

COMPARISON WITH STERN ET AL. [4] AND [5]

Rank Cumulative density Cumulative density Cumulative density
in our experiment in [4] in [5]

(20000 data) (20000 data) (181000 data)

1 33.94% 26% 34%
5 60.47% 55% 66%
10 69.50% 68% 76%
20 77.16% 81% 86%

presented in Figs. 5, 6, and 7. Our system was beaten by
GnuGo3.6, but many of the moves were not too bad.

1 − 14 were not bad. 15 was a bad move but our system
could not correspond to it correctly (16 and 17 were not
bad, but 18 and 20 were bad). 21 − 38 were not bad. 39
and 40 were bad. 41 − 54 were not bad. 55 was strange.
56 − 76 were not bad 77 and 79 were bad and 78 and 80
correctly corresponded to them. 81 − 92 were not bad. 93
was bad. 94 − 115 were not bad. 116 was bad but GnuGo
could not correspond to it correctly. 117−129 were not bad.
130 was bad (our system could not understand the capture
of stones). 131− 163 were not bad. 164 was bad. 165− 185
were not bad. 186,188, and 190 were nonsensical (187,189,
and 191 correctly corresponded to them). 192 − 199 were
not bad. 200 was bad. 201 − 205 were not bad. 206 was
bad (our system could not understand the life and death of
stones). 207 − 221 were not bad. 222 was nonsensical. 223
was not bad. 224 was bad (our system could not understand
the connection of stones). 225,227, and 229 correctly cut
and killed white stones. 230,232,234,236, and 238 were bad
(231,233,235,237, and 239 correctly corresponded to them).
242 and 244 were nonsensical and 243 and 245 correctly
corresponded to them. 246 − 249 were not bad. 250 was
nonsensical. 251 − 255 were not bad. 256 was nonsensical.
257 − 261 were not bad. 262 and 264 were bad. 263
and 265 were not bad. 266,268,and 270 were nonsensical.
267,269,and 271 were not bad. 272− 292 were nonsensical.
293 was passed.

V. DISCUSSION AND CONCLUSION

We demonstrated that using MEM can attain a high degree
of accuracy with a relatively small amount of training data.

However, there might be a problem in using our system
in a Go program. We used experts’ previous moves in
section IV, as a feature for machine learning, but in a
Go program we have to use its previous moves and its
opponent’s previous moves, which may be bad moves
because computer Go is still so weak. Using bad moves
as features to predict moves could have a bad effect on
prediction because such bad moves are rarely observed in
the training data. We may have to consider features other
than previous moves or we may have to consider using
non-expert (poor player) matches as training data. We also
have to balance prediction accuracy, time consumption, and
memory consumption.

194

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Authorized licensed use limited to: The University of Manchester. Downloaded on February 9, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

20

56 54

52

50

48

46

44 42

40

38

36

34

32

30

28

26

24

22

18

16 14

12

10

86

4

2

58

19

55

5351

49 47

45

43 41

39

37

35

33

312927

25

23

21

17

15

13

11

9

7

5 3

1

73

57

71

69

67

65

63

61

59

89

85

87

83

81

79

77

75

99

97 95

93

91

100

98

96

94 9290

88

86

84

82

80

78

76 74

72

70

68

66

64

62

60

Black was GnuGo’s turn and white was our system’s turn.

Fig. 5. Match with GnuGo3.6 [8] I

200

198

196

194

192

190

188

186

184

182

180

178176

174

172

170

168

166

164

162

160

158

156

154

152

150

148

146

144

142 140

138

136

134

132

130

128

126

124122

120

118

116 114

112

110

108

106

104

102101

199

197

195

193

191

189

187

185

183

181

179

177

175173

171

169

167165

163

161

159

157

155

153

151

149

147

145

143

141

139

137 135

133

131

129

127

125

123

121

119

117

115 113

111

109 107 105

103

110 128 164

Fig. 6. Match with GnuGo3.6 II

271

265

259

253

247

241

235

229

223

217

205

211

291

289

287

285

283

281

279

277

275

273

269

267

263

261

257

255

251

249

245

243

239

237

233 231

227

225

221

219

215

213

209

207

203201

236

230

224

218 212

206

292 290

288

286

284 282

280

278

276

274

272

270

268 266

264262

260258

256

254

252

250

248

246

244

242

240

238

234

232

228226

222

220

216

214

210

208

204202

265right of 269right of 205left of

Fig. 7. Match with GnuGo3.6 III

REFERENCES

[1] “GoBase.org,” accessed 25-October-2006. [Online]. Available:
http://gobase.org/

[2] B. Bouzy and G. Chaslot, “Bayesian generation and integration of K-
nearest-neighbor patterns for 19x19 go,” IEEE 2005 symposium on
computational Intelligence in Games, Colchester, UK, G. Kendall &
Simon Lucas (eds), pp. 176–181, 2005.

[3] E. van der Werf, J. Uiterwijk, E. Postma, and J. van den Herik, “Local
move prediction in Go.” 3rd International Conference on Computers
and Games, Edmonton, pp. 393–412, 2002.

[4] D. Stern, R. Herbrich, and T. Graepel, “Bayesian Pattern Ranking for
Move Prediction in the Game of Go.” 2005, Draft.

[5] D. Stern, R. Herbrich, and T. Graepel, “Bayesian Pattern Ranking for
Move Prediction in the Game of Go.” in Proceedings of the 23rd
International Conference on Machine Learning, 2006, pp. 873–880.

[6] F. de Groot, “Moyo Go Studio,” accessed 25-October-2006. [Online].
Available: http://www.moyogo.com/

[7] A. Zobrist, “A new hashing method with applications for game
playing.” ICCA Journal, no. 13(2), pp. 69–73, 1990.

[8] “Gnugo3.6,” 2004, Free Software Foundation. [Online]. Available:
http://www.gnu.org/software/gnugo/gnugo.html

[9] T. P. Minka, “A family of algorithms for approximate Bayesian
inference.” Ph.D. dissertation, Massachusetts Institute of Technology,
2001.

[10] J. Kazama and J. Tsujii, “Evaluation and Extension of Maximum En-
tropy Models with Inequality Constraints,” in Proceedings of the 2003
Conference on Empirical Methods in Natural Language Processing
(EMNLP 2003), 2003, pp. 137–144.

[11] “A simple C++ library for maximum entropy classification,”
accessed 25-October-2006. [Online]. Available: http://www-
tsujii.is.s.u-tokyo.ac.jp/%7Etsuruoka/maxent/

[12] T. Mark and J. Fairbairn, “GoGoD,” accessed 25-October-2006.
[Online]. Available: http://www.gogod.demon.co.uk/

[13] E. van der Werf, “AI techniques for the game of Go.” Ph.D. disserta-
tion, Universiteit Maastricht, 2004.

[14] A. L. Berger, S. A. D. Pietra, and V. J. D. Pietra, “A Maximum
Entropy Approach to Natural Language Processing,” Computational
Linguistics, vol. 22 Issue1, pp. 39–71, 1996.

195

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Authorized licensed use limited to: The University of Manchester. Downloaded on February 9, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

