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Abstract

Current domain-specific information extrac-
tion systems represent an important resource
for biomedical researchers, who need to pro-
cess vaster amounts of knowledge in short
times. Automatic discourse causality recog-
nition can further improve their workload
by suggesting possible causal connections
and aiding in the curation of pathway mod-
els. We here describe an approach to the
automatic identification of discourse causal-
ity triggers in the biomedical domain using
machine learning. We create several base-
lines and experiment with various parame-
ter settings for three algorithms, i.e., Condi-
tional Random Fields (CRF), Support Vector
Machines (SVM) and Random Forests (RF).
Also, we evaluate the impact of lexical, syn-
tactic and semantic features on each of the
algorithms and look at errors. The best per-
formance of 79.35% F-score is achieved by
CRFs when using all three feature types.

1 Introduction

The need to provide automated, efficient and ac-
curate means of retrieving and extracting user-
oriented biomedical knowledge has significantly in-
creased according to the ever-increasing amount
of knowledge pusblished daily in the form of re-
search articles (Ananiadou and McNaught, 2006;
Cohen and Hunter, 2008). Biomedical text mining
has seen significant recent advancements in recent
years (Zweigenbaum et al., 2007), including named
entity recognition (Fukuda et al., 1998), corefer-
ence resolution (Batista-Navarro and Ananiadou,

2011; Savova et al., 2011) and relation (Miwa et
al., 2009; Pyysalo et al., 2009) and event extraction
(Miwa et al., 2012b; Miwa et al., 2012a). Using
biomedical text mining technology, text can now be
enriched via the addition of semantic metadata and
thus can support tasks such as analysing molecu-
lar pathways (Rzhetsky et al., 2004) and semantic
searching (Miyao et al., 2006).

However, more complex tasks, such as question
answering and automatic summarisation, require
the extraction of information that spans across sev-
eral sentences, together with the recognition of rela-
tions that exist across sentence boundaries, in order
to achieve high levels of performance.

The notion of discourse can be defined as a co-
herent sequence of clauses and sentences. These
are connected in a logical manner by discourse re-
lations, such as causal, temporal and conditional,
which characterise how facts in text are related. In
turn, these help readers infer deeper, more com-
plex knowledge about the facts mentioned in the
discourse. These relations can be either explicit
or implicit, depending whether or not they are ex-
pressed in text using overt discourse connectives
(also known as triggers). Take, for instance, the
case in example (1), where the trigger Therefore
signals a justification between the two sentences:
because “a normal response to mild acid pH from
PmrB requires both a periplasmic histidine and sev-
eral glutamic acid residues”, the authors believe
that the “regulation of PmrB activity could involve
protonation of some amino acids”.

(1) In the case of PmrB, a normal response to
mild acid pH requires not only a periplasmic his-



tidine but also several glutamic acid residues.
Therefore, regulation of PmrB activity may in-
volve protonation of one or more of these amino
acids.

Thus, by identifying this causal relation, search
engines become able to discover relations between
biomedical entities and events or between experi-
mental evidence and associated conclusions. How-
ever, phrases acting as causal triggers in certain
contexts may not denote causality in all cases.
Therefore, a dictionary-based approach is likely to
produce a very high number of false positives. In
this paper, we explore several supervised machine-
learning approaches to the automatic identification
of triggers that actually denote causality.

2 Related Work

A large amount of work related to discourse pars-
ing and discourse relation identification exists in the
general domain, where researchers have not only
identified discourse connectives, but also developed
end-to-end discourse parsers (Pitler and Nenkova,
2009; Lin et al., 2012). Most work is based on the
Penn Discourse Treebank (PDTB) (Prasad et al.,
2008), a corpus of lexically-grounded annotations
of discourse relations.

Until now, comparatively little work has been
carried out on causal discourse relations in the
biomedical domain, although causal associations
between biological entities, events and processes
are central to most claims of interest (Kleinberg
and Hripcsak, 2011). The equivalent of the PDTB
for the biomedical domain is the BioDRB corpus
(Prasad et al., 2011), containing 16 types of dis-
course relations, e.g., temporal, causal and condi-
tional. The number of purely causal relations an-
notated in this corpus is 542. There are another 23
relations which are a mixture between causality and
one of either background, temporal, conjunction or
reinforcement relations. A slightly larger corpus is
the BioCause (Mihdild et al., 2013), containing over
850 manually annotated causal discourse relations
in 19 full-text open-access journal articles from the
infectious diseases domain.

Using the BioDRB corpus as data, some re-
searchers explored the identification of discourse
connectives (Ramesh et al., 2012). However, they

do not distinguish between the types of discourse
relations. They obtain the best F-score of 75.7%
using CREF, with SVM reaching only 65.7%. These
results were obtained by using only syntactic fea-
tures, as sematic features were shown to lower the
performance. Also, they prove that there exist dif-
ferences in discourse triggers between the biomedi-
cal and general domains by training a model on the
BioDRB and evaluating it against PDTB and vice-
versa.

3 Methodology

In this section, we describe our data and the features
of causal triggers. We also explain our evaluation
methodology.

3.1 Data

The data for the experiments comes from the Bio-
Cause corpus. BioCause is a collection of 19
open-access full-text journal articles pertaining to
the biomedical subdomain of infectious diseases,
manually annotated with causal relationships. Two
types of spans of text are marked in the text, namely
causal triggers and causal arguments. Each causal
relation is composed of three text-bound annota-
tions: a trigger, a cause or evidence argument and
an effect argument. Some causal relations have im-
plicit triggers, so these are excluded from the cur-
rent research.

Figure 1 shows an example of discourse causal-
ity from BioCause, marking the causal trigger and
the two arguments with their respective relation.
Named entities are also marked in this example.

BioCause contains 381 unique explicit triggers in
the corpus, each being used, on average, only 2.10
times. The number decreases to 347 unique triggers
when they are lemmatised, corresponding to an av-
erage usage of 2.30 times per trigger. Both count
settings show the diversity of causality-triggering
phrases that are used in the biomedical domain.

3.2 Features

Three types of features have been employed in the
development of this causality trigger model, i.e.,
lexical, syntactic and semantic. These features are
categorised and described below.
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the effect of the mic mutation on the invasive phenotype is mainly dependent upon HilE function.

Figure 1: Causal relation in the BioCause.

3.2.1 Lexical features

The lexical features are built from the actual to-
kens present in text. Tokenisation is performed by
the GENIA tagger (Tsuruoka et al., 2005) using the
biomedical model. The first two features represent
the token’s surface expression and its base form.

Neighbouring tokens have also been considered.
We included the token immediately to the left and
the one immediately to the right of the current to-
ken. This decision is based on two observations.
Firstly, in the case of tokens to the left, most trig-
gers are found either at the beginning of the sen-
tence (311 instances) or are preceded by a comma
(238 instances). These two left contexts represent
69% of all triggers. Secondly, for the tokens to the
right, almost 45% of triggers are followed by a de-
terminer, such as the, a or an, (281 instances) or a
comma (71 instances).

3.2.2 Syntactic features

The syntax, dependency and predicate argument
structure are produced by the Enju parser (Miyao
and Tsujii, 2008). Figure 2 depicts a partial lexical
parse tree of a sentence which starts with a causal
trigger, namely Our results suggest that. From the
lexical parse trees, several types of features have
been generated.

The first two features represent the part-of-
speech and syntactic category of a token. For in-
stance, the figure shows that the token that has the
part-of-speech IN. These features are included due
to the fact that either many triggers are lexicalised
as an adverb or conjunction, or are part of a verb
phrase. For the same reason, the syntactical cate-
gory path from the root of the lexical parse tree to
the token is also included. The path also encodes,
for each parent constituent, the position of the to-
ken in its subtree, i.e., beginning (B), inside (/) or
end (E); if the token is the only leaf node of the con-
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Figure 2: Partial lexical parse tree of a sentence starting
with a causal trigger.

stituent, this is marked differently, using a C. Thus,
the path of that, highlighted in the figure, is I-S/I-
VP/B-CP/C-CX.

Secondly, for each token, we extracted the predi-
cate argument structure and checked whether a rela-
tion exista between the token and the previous and
following tokens. The values for this feature repre-
sent the argument number as allocated by Enju.

Thirdly, the ancestors of each token to the third
degree are instantiated as three different features.
In the case that such ancestors do not exist (i.e., the
root of the lexical parse tree is less than three nodes
away), a “none” value is given. For instance, the
token that in Figure 2 has as its first three ancestors
the constituents marked with CX, CP and VP.

Finally, the lowest common ancestor in the lexi-
cal parse tree between the current token and its left
neighbour has been included. In the example, the
lowest common ancestor for that and suggest is VP.

These last two feature types have been produced
on the observation that the lowest common ances-
tor for all tokens in a causal trigger is S or VP in



over 70% of instances. Furthermore, the percent-
age of cases of triggers with V or ADV as lowest
common ancestor is almost 9% in each case. Also,
the average distance to the lowest common ancestor
is 3.

3.2.3 Semantic features

We have exploited several semantic knowledge
sources to identify causal triggers more accurately,
as a mapping to concepts and named entities acts as
a back-off smoothing, thus increasing performance.

One semantic knowledge source is the BioCause
corpus itself. All documents annotated for causality
in BioCause had been previously manually anno-
tated with biomedical named entity and event infor-
mation. This was performed in the context of vari-
ous shared tasks, such as the BioNLP 2011 Shared
Task on Infectious Diseases (Pyysalo et al., 2011).
We therefore leverage this existing information to
add another semantic layer to the model. More-
over, another advantage of having a gold standard
annotation is the fact that it is now possible to sepa-
rate the task of automatic causal trigger recognition
from automatic named entity recognition and event
extraction. The named entity and event annotation
in the BioCause corpus is used to extract informa-
tion about whether a token is part of a named entity
or event trigger. Furthermore, the type of the named
entity or event is included as a separate feature.

The second semantic knowledge source is Word-
Net (Fellbaum, 1998). Using this resource, the hy-
pernym of every token in the text has been included
as a feature. Only the first sense of every token has
been considered, as no sense disambiguation tech-
nique has been employed.

Finally, tokens have been linked to the Unified
Medical Language System (UMLS) (Bodenreider,
2004) semantic types. Thus, we included a feature
to say whether a token is part of a UMLS type and
another for its semantic type if the previous is true.

3.3 Experimental setup

We explored with various machine learning algo-
rithms and various settings for the task of identify-
ing causal triggers.

On the one hand, we experimented with CRF
(Lafferty et al., 2001), a probabilistic modelling
framework commonly used for sequence labelling

tasks. In this work, we employed the CRFSuite im-
plementation'.

On the other hand, we modelled trigger detection
as a classification task, using Support Vector Ma-
chines and Random Forests. More specifically, we
employed the implementation in Weka (Hall et al.,
2009; Witten and Frank, 2005) for RFs, and Lib-
SVM (Chang and Lin, 2011) for SVMs.

4 Results and discussion

Several models have been developed and 10-fold
cross-evaluated to examine the complexity of the
task, the impact of various feature types (lexical,
syntactic, semantic). Table 1 shows the perfor-
mance evaluation of baseline systems and other
classifiers. These are described in the following
subsections. It should be noted that the dataset is
highly skewed, with a ratio of positive examples to
negative examples of approximately 1:52.

Classifier P R Fq
& | Dict 836 | 100 | 15.43
'S | Dep 7.51 | 76.66 | 13.68
& | Dict+Dep | 14.30 | 75.33 | 24.03
> | CRF 89.29 | 73.53 | 79.35
= | SVM 81.62 | 61.05 | 69.85
A | RandFor | 78.16 | 66.96 | 72.13
> | CRF 89.13 | 64.04 | 72.87
= | SVM 7421 | 56.82 | 64.36
® | RandFor | 73.80 | 60.95 | 66.76

Table 1: Performance of various classifiers in identifying
causal connectives

4.1 Baseline

Several baselines have been devised. The first base-
line is a dictionary-based heuristic, named Dict. A
lexicon is populated with all annotated causal trig-
gers and then this is used to tag all instances of its
entries in the text as connectives. The precision of
this heuristic is very low, 8.36%, which leads to an
F-score of 15.43%, considering the recall is 100%.
This is mainly due to triggers which are rarely used
as causal triggers, such as and, by and that.

"http://www.chokkan.org/software/
crfsuite



Building on the previously mentioned observa-
tion about the lowest common ancestor for all to-
kens in a causal trigger, we built a baseline system
that checks all constituent nodes in the lexical parse
tree for the S, V, VP and ADV tags and marks them
as causal triggers. The name of this system is Dep.
Not only does Dep obtain a lower precision than
Dict, but it also performs worse in terms of recall.
The F-score is 13.68%, largely due to the high num-
ber of intermediate nodes in the lexical parse tree
that have VP as their category.

The third baseline is a combination of Dict and
Dep: we consider only constituents that have the
necessary category (S, V, VP or ADV) and include
a trigger from the dictionary. Although the recall
decreases slightly, the precision increases to almost
twice that of both Dict and Dep. This produces a
much better F-score of 24.03%.

4.2 Sequence labelling task

As a sequence labelling task, we have modelled
causal trigger detection as two separate tasks.
Firstly, each trigger is represented in the B-I-O for-
mat (further mentioned as the 3-way model). Thus,
the first word of every trigger is tagged as B (be-
gin), whilst the following words in the trigger are
tagged as I (inside). Non-trigger words are tagged
as O (outside).

The second model is a simpler version of the pre-
vious one: it does not distinguish between the first
and the following words in the trigger. In other
words, each word is tagged either as being part of
or outside the trigger, further known as the 2-way
model. Hence, a sequence of contiguous tokens
marked as part of a trigger form one trigger.

CRF performs reasonably well in detecting
causal triggers. In the 3-way model, it obtains an
F-score of almost 73%, much better than the other
algorithms. It also obtains the highest precision
(89%) and recall (64%). However, in the 2-way
model, CRF’s performance is slightly lower than
that of Random Forests, achieving only 79.35%. Its
precision, on the other hand, is the highest in this
model. The results from both models were obtained
by combining features from all three feature cate-
gories.

Table 2 show the effect of feature types on both
models of CRFs. As can be observed, the best per-

Features P R F;
Lex 88.99 | 67.09 | 73.59
Syn 92.20 | 68.68 | 75.72
2 Sem 87.20 | 63.30 | 69.36
= | Lex-Syn 87.76 | 73.29 | 78.73
A | Lex+Sem 89.54 | 69.10 | 75.61
Syn+Sem 87.48 | 72.62 | 78.13
Lex-Syn-Sem | 89.29 | 73.53 | 79.35
Lex 85.87 | 56.34 | 65.18
Syn 87.62 | 61.44 | 70.22
2 Sem 80.78 | 51.43 | 59.39
= | Lex+Syn 87.80 | 63.04 | 72.59
“ | Lex+Sem 85.50 | 58.11 | 66.80
Syn+Sem 84.83 | 64.94 | 72.41
Lex-Syn-Sem | 89.13 | 64.04 | 72.87

Table 2: Effect of feature types on the sequence labelling
task, given in percentages.

formances, in terms of F-score, including the previ-
ously mentioned ones, are obtained when combin-
ing all three types of features, i.e., lexical, syntactic
and semantic. The best precision and recall, how-
ever, are not necessarily achieved by using all three
feature types. In the two-way model, the best preci-
sion is obtained by using the syntactic features only,
reaching over 92%, almost 3% higher than when
all three feature types are used. In the three-way
model, syntactic and semantic features produce the
best recall (almost 65%), which is just under 1%
higher than the recall when all features are used.

4.3 Classification task

As a classification task, an algorithm has to decide
whether a token is part of a trigger or not, similarly
to the previous two-way subtask in the case of CRF.

Firstly, we have used RF for the classification
task. Various parameter settings regarding the num-
ber of constructed trees and the number of random
features have been explored.

The effect of feature types on the performance
of RF is shown in Table 3. As can be observed,
the best performance is obtained when combining
lexical and semantic features. Due to the fact that
causal triggers do not have a semantic mapping to
concepts in the named entity and UMLS annota-
tions, the trees in the random forest classifier can
easily produce rules that distinguish triggers from



non-triggers. As such, the use of semantic features
alone produce a very good precision of 84.34%.
Also, in all cases where semantic features are com-
bined with other feature types, the precision in-
creases by 0.5% in the case of lexical features and
3.5% in the case of syntactic features. However,
the recall of semantic features alone is the lowest.
The best recall is obtained when using only lexical
features.

Features P R Fq
Lex 78.47 | 68.30 | 73.03
Syn 68.19 | 62.36 | 65.15
Sem 84.34 | 56.83 | 67.91
Lex+Syn 77.11 | 65.92 | 71.09
Lex+Sem 79.10 | 67.91 | 73.08
Syn+Sem 71.83 | 64.45 | 67.94
Lex+Syn+Sem | 77.98 | 67.31 | 72.25

Table 3: Effect of feature types on Random Forests.

Secondly, we explored the performance of SVMs
in detecting causal triggers. We have experimented
with two kernels, namely polynomial (second de-
gree) and radial basis function (RBF) kernels. For
each of these two kernels, we have evaluated vari-
ous combinations of parameter values for cost and
weight. Both these kernels achieved similar results,
indicating that the feature space is not linearly sep-
arable and that the problem is highly complex.

The effect of feature types on the performance of
SVMs is shown in Table 4. As can be observed,
the best performance is obtained when combining
the lexical and semantic feature types (69.85% F-
score). The combination of all features produces
the best precision, whilst the best recall is obtained
by combining lexical and semantic features.

Features P R | 51
Lex 80.80 | 60.94 | 69.47
Syn 82.94 | 55.60 | 66.57
Sem 85.07 | 56.51 | 67.91
Lex+Syn 86.49 | 53.63 | 66.81
Lex+Sem 81.62 | 61.05 | 69.85
Syn+Sem 84.49 | 55.31 | 66.85
Lex+Syn+Sem | 87.70 | 53.96 | 66.81

Table 4: Effect of feature types on SVM.

4.4 Error analysis

As we expected, the majority of errors arise from
sequences of tokens which are only used infre-
quently as non-causal triggers. This applies to 107
trigger types, whose number of false positives (FP)
is higher than the number of true positives (TP). In
fact, 64 trigger types occur only once as a causal in-
stance, whilst the average number of FPs for these
types is 14.25. One such example is and, for which
the number of non-causal instances (2305) is much
greater than that of causal instances (1). Other ex-
amples of trigger types more commonly used as
causal triggers, are suggesting (9 TP, 54 FP), indi-
cating (8 TP, 41 FP) and resulting in (6 TP, 14 FP).
For instance, example (2) contains two mentions of
indicating, but neither of them implies causality.

(2) Buffer treated control cells showed intense
green staining with syto9 (indicating viabil-
ity) and a lack of PI staining (indicating no
dead/dying cells or DNA release).

5 Conclusions and Future Work

We have presented an approach to the automatic
identification of triggers of causal discourse rela-
tions in biomedical scientific text. The task has
proven to be a highly complex one, posing many
challenges. Shallow approaches, such as dictionary
matching and lexical parse tree matching, perform
very poorly, due to the high ambiguity of causal
triggers (with F-scores of approximately 15% each
and 24% when combined). We have explored vari-
ous machine learning algorithms that automatically
classify tokens into triggers or non-triggers and we
have evaluated the impact of multiple lexical, syn-
tactic and semantic features. The performance of
SVMs prove that the task of identifying causal trig-
gers is indeed complex. The best performing clas-
sifier is CRF-based and combines lexical, syntac-
tical and semantical features in order to obtain an
F-score of 79.35%.

As future work, integrating the causal relations in
the BioDRB corpus is necessary to check whether
a data insufficiency problem exists and, if so, esti-
mate the optimal amount of necessary data. Fur-
thermore, evaluations against the general domain



need to be performed, in order to establish any dif-
ferences in expressing causality in the biomedical
domain. One possible source for this is the PDTB
corpus. A more difficult task that needs attention
is that of identifying implicit triggers. Finally, our
system needs to be extended in order to identify the
two arguments of causal relations, the cause and ef-
fect, thus allowing the creation of a complete dis-
course causality parser.
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