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Abstract
Due to the ever growing amount of publications, In-
formation Extraction (IE) from text is increasingly is
recognized as one of crucial technologies in bioinfor-
matics. However, for IE to be practically applicable,
adaptability/portability of a system is crucial, consid-
ering extremely diverse demands in biomedical IE ap-
plication. We should be able to construct a set of “ex-
traction rules” adapted for a specific application at low
cost.
We propose a new method for automatic construc-
tion of application-specific extraction rules, which ef-
fectively utilizes predicate-argument structures (PASs)
produced by a full-parser. By dividing labor be-
tween generic linguistic rules in the parser and
application-specific extraction rules to be constructed
from scratch, this method facilitates acquisition of ex-
traction rules from a relatively small annotated cor-
pus. We conducted an experiment in which the method
was applied to extraction of protein-protein interac-
tion. The result shows that, though the current ver-
sion of the construction algorithm is straightforward,
the performance is remarkably promising, compara-
ble with those obtained by manual-made extraction
rules or those obtained by rules generalized by ma-
chine learning techniques.

Introduction
Although Information Extraction (IE) from text is in-
creasingly recognized as a crucial component in bioin-
formatics, it has hardly been used yet in the process of
actual data curation, knowledge integration/discovery,
etc. This is because

(1) [Quality] the performance of current IE in terms of
recall and precision is not good enough, and/or

(2) [Portability/Adaptability] current IE requires a lot
of human effort to adapt for particular information
needs in specific applications.

While IE systems whose extraction rules are carefully
crafted and adapted for particular applications (such
as [8, 3]) show near-practical performance, the same
performance can hardly be repeated in different appli-
cations that have to deal with different kinds of infor-

mation (protein-protein interaction, disease-gene asso-
ciation, toxicity of materials, etc.). Manual engineer-
ing of IE systems is a tedious and time-consuming pro-
cess.
Techniques based on machine learning (ML) (such
as [6, 2]) are expected to alleviate this difficulty in
manually-crafted IE. However, in most cases, they
simply transfer the cost of manually crafting rules to
that of constructing a large amount of training data,
which in case of IE requires tedious manual labor of
annotating text. It is also the case that, when they are
applied directly to surface sequences of words in text,
ML techniques as they are have shown poor results.
In order to render IE techniques practical in biomedical
domains, it is crucial that a generic part of a system,
which can be transferred across IE systems in different
applications, is clearly distinguished from application-
specific part and thereby the cost of adaptation could
be minimized.
In this paper, we propose a new system architecture,
in which a full parser plays a significant role for im-
proving the quality of performance as well as increas-
ing the adaptability of an IE system. A full parser is
a program that takes a sentence as input to produce
its semantic representation (predicate-argument struc-
ture: PAS). While a full parser embodies linguistic
knowledge that is valid across different applications,
extraction rules that are application-dependent have to
be constructed from scratch.
Because diverse forms of surface sentences with the
same meanings are reduced into single PASs by a full
parser, the construction algorithm for extraction rules
is much simpler than those seeing sentences as mere
sequences of words and can acquire rules by using a
much smaller training set. The rules constructed thus
give a promising performance (37.3% precision and
45.3% recall without any manual intervention for IE
of protein-protein interactions). Furthermore, while
we do not discuss in this paper, because extraction
rules thus acquired are easy to understand, one can
revise and augment them manually and develop IE
systems with performance comparable with (or better
than) carefully crafted IE systems.
This paper discusses details of the construction algo-
rithms, the performance of an IE system and future de-



velopment after briefly discussing the full parser.

Previous Work
Research for biomedical interaction extraction from
text is now attracting many works [4, 13, 12, 1, 14, 9,
8, 17, 3, 2, 6, 20]. Their IE systems include a process
that reduces diverse surface forms in text into a stan-
dard structure by natural language processing (NLP)
and makes extraction rules on the structure. There are
works using pattern matching [12, 1, 2, 6] and ones us-
ing shallow parsing [14, 9, 8] or full parsing [21, 13,
4, 17, 3]. Another categorization of the works is how
they construct extraction rules. One approach is based
on hand-written rule sets [12, 4, 1, 14, 17, 8, 3]. The
other is rule generation by ML based on a corpus with
desired information [9, 2, 6]. Some latest works re-
lated closely to ours are as follows.
Daraselia et al. [3] used a full parser based on context-
free grammar and a lexicon developed specifically for
MEDLINE. They wrote extraction rules on seman-
tic trees and extracted mammalian protein functional
links by 91% precision and the estimated recall was
30–50%. Their extraction rules require much manual
modification to apply to different kinds of information.
Bunescu et al. [2] used machine learning technique to
construct extraction rules on surface words as inter-
fillers (text fragments between participating entities),
role-fillers and longest common subsequences which
represent protein-protein interactions. The corpus they
used is Aimed, which consists of 230 MEDLINE
abstracts annotated with protein names and protein-
protein interactions. They reached about 48% preci-
sion for 45% recall. One of the shortcomings of the
system is that generated patterns are hard to augment
manually to improve performance because the patterns
are not ensured syntactically or semantically. Huang et
al. [6] used a dynamic programming algorithm to ob-
tain patterns on parts-of-speech and surface words for
protein-protein interactions. On sentences which in-
clude keywords, their precision was 80.5% and recall
was 80.0%. The system requires training corpus on
which sentences are aligned to estimate parameters.
Besides the biomedical domain, there are works which
acquire extraction rules automatically in other do-
mains. EXDISCO by Yangarber et al. [22] identifies a
set of relevant documents and a set of extraction rules
from un-annotated text, starting from a small set of
seed rules. The rules are constructed on results of a
general-purpose dependency parse. Their result was
73% precision and 57% recall on MUC-6 corpus [11].
Sudo et al. [16] acquired extraction rules as subtrees
derived from dependency trees of sentences in auto-
matically retrieved un-annotated documents. Their re-
sult was about 75% precision and 55% recall on the

activateARG1 Entity1 (semantical subject)ARG2 Entity2 (semantical object)
Figure 1: A PAS of “activate”

Management Succession scenario of MUC-6. One
problem of those systems is that dependency parse
cannot treat non-local dependencies such as the se-
mantic subject (Entity1) of “activating” in the last sen-
tence of Table 1, and thus rules acquired from the con-
structions are partial.

Approach
Surface Variations of the Same Information

IE can be seen as a process that reduces diverse sur-
face forms in text into a fixed standard representation
when they express the same information. Whether two
forms in text express the same information or not de-
pends on the perspectives or interests researchers have.
For example, “Entity1 interacts with non-polymorphic
regions of Entity2” can be considered to express the
same information as “Entity1 interacts with Entity2” if
one is interested in general protein-protein interaction
regardless of their modes of interaction, but cannot be
for others whose interests are the modes. In short, the
application-specific nature of IE resides in this kind of
perspective-dependency in the definition of informa-
tion.
However, there are other types of surface variations
that express the same information regardless of users’
perspectives, such as “Entity1 activates Entity2” and
“Entity2 is activated by Entity1”. In some cases, a sur-
face form can be considered to contain as its part the
same information that another form expresses, regard-
less of users’ perspectives. “Entity1 can activate En-
tity2” vs. “Entity1 activates Entity2” are such exam-
ples.
We mean that by a full parser, a program which assigns
standard forms to surface sentences, the same informa-
tion of these kinds is represented in the same formats.
In this format, all the surface forms in Table 1 share the
same information “Entity1 activate Entity2” as their
part, and the shared information is represented in the
same form in Figure 1. We call this form Predicate-
Argument Structure (PAS).
An example of a set of PASs that are assigned to a sen-
tence is given in Figure 2. Bold words are predicates.
Arguments of the predicates are described in ARGn
(n = 1,2, . . .). MODARG denotes the modified PAS.
Numbers in squares denote shared structures, i.e. the
same PAS.



Table 1: Syntactical variation examples of “activate”

Active Main Verb Entity1 recognizes and activates Entity2.
After an Auxiliary Verb Entity1 can activate Entity2 through a region in its carboxy terminus.
Passive Entity2 are activated by Entity1a and Entity1b
Past Particle Entity2 activated by Entity1 are not well characterized.
Verb of a Relative Clause The herpesvirus encodes a functional Entity1 that activates human Entity2.
Infinitive Entity1 can functionally cooperate to synergistically activate Entity2.
Gerund in a prepositional phrase The Entity1 play key roles by activating Entity2.withARG1ARG2      3322 ,interactARG1 ,11CD4MODARG 11 coreceptor 22 region,

ofARG1ARG2 33 molecule44 theARG1 44non-polymorphicARG1 33 , ,
CD4 coreceptor interacts with non-polymorphic regions of the molecules.

Figure 2: PAS example

What is important here is that computation from sur-
face sentences to PASs can be carried out regardless of
users’ perspectives and that PASs represent by single
forms the same information that appear in very differ-
ent sequences of words. Due to such reduction in com-
plexity, we can expect that the construction algorithm
of IE rules that works on PASs needs a much smaller
training corpus than those working on surface word se-
quences. Furthermore, due to the reduction of surface
diversity at the PAS level, an IE system with extraction
rules at this level should show improved performance
in terms of recall.

Properties of Required PAS Patterns

Classification of Required Patterns Although
many previous biomedical IE system focus on verbs
which represent target events by themselves (i.e. “acti-
vate”, “bind”), there are many cases that combinations
of verbs and certain nouns form proper IE patterns
(i.e. “form complexes with”, “be considered as an
antagonist for”). We investigated and classified pat-
terns which are needed to extract interacting protein
pairs occurred in Aimed [2] to see what patterns are
required in addition to ones that consist of only one
verb. We found five classes based on constituents of
the patterns. Table 2 shows the details.
Class (1) consists of the simplest patterns, which in-
clude only one verb and interacting proteins (entities)
and an optional preposition. The patterns are very clas-
sical.

Class (2) includes other patterns with only one verb,
and can be divided into two subclasses based on prop-
erties of their nominal constituents. The nouns of sub-
class (2a) cannot be omitted, although ones of sub-
class (2b) can be omitted and the patterns become
class (1). In subclass (2a), a pattern consists of a
verb and nouns which are not the entities (here, the
interacting proteins) themselves. The nouns tend to
represent complexes (ex. “complex”), interacting sub-
stances (ex. “receptor”, “antagonist”) or words denot-
ing interactions (ex. “activity”, “interaction”). In sub-
class (2b), nouns to represent parts or complexes of the
entities (ex. “dimer”, “region”) are inserted.
Class (3) is a complicated case which takes more than
one verb in patterns. In most cases, one of the verbs in
the patterns is used to modify a noun phrase.
Patterns in class (4) do not include verb phrases and
the meaning of them is mainly represented by nouns.
Patterns in subclass (4a) consist of nouns represent-
ing interacting substances (ex. “ligand”, “receptor”)
and their coordinates. Ones in subclass (4b) are based
on nouns representing interaction themselves (ex. “in-
teraction”, “oligomerization”) or its related things (ex.
“complex”, “homodimer”). On the other hand, ones in
subclass (4c) require other adjective words represent-
ing interactions in addition to nouns, although whole
patterns are noun phrases.
And patterns in class (5) include adjectives as their key
constituents. The adjectives can be both attributive and
predicative.



Table 2: Classes of Proper Patterns
(1) Entity-Verb(-Preposition)-Entity
This study demonstrates that Entity1 recognizes Entity2a and Entity2b by distinct mechanisms.
We also found another armadillo-protein, Entity1, interacted with Entity2.
(2) Other Patterns with Only 1 Verb

(2a) Combinations of Verbs and Non-Entity Nouns
Cell surface Entity1 formed complexes with actin-binding protein Entity2.
Entity1 was first characterized as a receptor for Entity2.
Entity1 can decrease the fusogenic activity of Entity2 via a direct interaction.
(2b) Nouns Representing Parts etc. of Entity
Two Entity1 molecules grasp each side of a twofold symmetric Entity2 dimer
Entity1 is interacted with a hydrophilic loop region in the C-terminal fragment of Entity2.

(3) Patterns with More than 1 Verbs
Entity1 recognizes one FGFR isoform known as the Entity2 isoform.
Entity1 contains this primary site as well as a region that restricts interaction with Entity2.
(4) Noun Patterns

(4a) Coordinates with Nouns Representing Interacting Substances
Entity1 ligand ( Entity2 )
cloning of Entity1 , a ligand for Entity2 on human T cells
(4b) Nouns Representing Interaction
Entity1 - Entity2 complexes
interaction of Entity1 with Entity2
(4c) Nouns and their Modifiers Representing Interaction
Entity1 and its binding specificity with Entity2
Entity1 binding domain on the human Entity2

(5) Adjective Patterns
dimeric Entity1
Entity1 is a homodimeric cysteine knot protein

Table 3: Additional Features of Proper Patterns
Coordination/Parenthesis
This study demonstrates that Entity1 recognizes Entity2a and Entity2b by distinct mechanisms.
Anaphora
Entity1 and its binding specificity with Entity2
Entity in an Optional Prepositional Phrase
Unlike human Entity1, the viral cytokine largely uses hydrophobic amino acids to contact Entity2.



Note that there is a case where only one entity partic-
ipates in an interaction. An example is the first one
of class (5), where only one entity (two molecules of
Entity1) forms a dimer.

How to Construct Patterns of Each Class Based
of these properties of the classes, we can construct pat-
terns of the classes automatically from a corpus tagged
with interacting entity information. Main ideas for
constructing each class are described below.
Class (1) is simple and easy to extract. Subclasses (4a)
and (4b) are depend on certain words, and able to ex-
tract only by surface words.
Patterns of subclasses (2a) and (2b) can be divided into
components: a verb (and a preposition) (verbal com-
ponent), and noun phrases including entities (nomi-
nal components). The difference of subclasses (2a)
and (2b) is that the nominal components is omissi-
ble or not, and subclass (2b) becomes class (1) af-
ter omission. In addition, the nominal components of
subclass (2b) are more flexible on which verb to con-
nect. Thus the nominal components of subclass (2b)
are pure components of the patterns, and ones of sub-
class (2a) are idiom-like with verbs. Because of this
property, we can assume two schemes: Subclasses (2a)
and (2b) can be distinguished by whether the nomi-
nal components are omissible, and after collecting the
nominal components of subclass (2b), they are able to
use in combination with any verbs of class (1). At
present, we implemented division of patterns of class
(2) into verbal and nominal components. But distinc-
tion of subclass (2a) from subclass (2b) remains future
work.
Although patterns of class (3) are small in number and
we have not fully investigated their property, we can
observe that they include two kinds of verbs, interac-
tion verbs and general verbs. The interaction verbs are
the same with classes (1) and (2b). Thus this class can
also be divided into components, although this division
is future work.
Classes (4c) and (5) have the same property that adjec-
tive modifiers are important. Because most adjectives
are general, optional and not appropriate for pattern
constituents, we have to filter out such ones. More-
over, we have to find out automatically whether adjec-
tives are needed or more nouns or verbs are needed.
This remains future work.

Additional Features Moreover, there are some ad-
ditional features notable about proper patterns. One
is coordination and parenthesis. In addition to class
(4a) above, all classes can be combined with coordi-
nation or parenthesis. Another feature is anaphora.
Patterns including anaphora have a property different
from classes in Table 2. The other is optional preposi-

CD4 coreceptor interacts with non-polymorphic regions of the molecules .Entity1 Entity2

Entity1MODARG Entity2ofARG1ARG2 withARG1ARG2      interactARG1 coreceptor 3322 ,,1111 22 region, 33

EntityMODARG withARG1ARG2      55interactARG1 ,55 Xnoun2 coreceptorXnounXnoun1 ofARG1 EntityregionARG2 Xnoun

Pattern Extraction
Pattern DivisionVerbal Component Nominal Component

Full ParsingCD4MODARG ofARG1ARG2 withARG1ARG2      interactARG1 coreceptor 3322 ,,1111 22 region, 33non-polymorphicARG1 33 theARG1 44, molecule44

Figure 3: Construction of an Extraction Rule

tional phrases, which include one of entities. The en-
tity is somehow the semantic subject of an interaction
verb, but it is hard to find out by parsing. Examples
of each feature are shown in Table 3. Among the fea-
tures, we have implemented a module to process co-
ordination and parenthesis (described in the next sec-
tion). Patterns with the optional prepositional phrases
can be extracted in our present method, if relations of
main verbs and the prepositional phrase are acquired
correctly by parsing. Anaphora handling is still future
work.

Method
We automatically construct rules for extraction of
protein-protein interactions from an annotated corpus.
The corpus needs to be tagged to denote which words
represent interacting protein pairs. Sentences of the
corpus are passed to a full parser and we convert them
into PASs, to absorb syntactical variations. From the
PASs, we extract PAS patterns for the interacting pro-
teins and divide them to verbal and nominal compo-
nents. An example of construction of extraction rules
is shown in Figure 3. The details of the construction
process are described in the following subsections.

Full Parsing
As we see in the previous sections, a full parser plays
a central role in our system. As a parser, we use
Enju [18], that is based on Head-Driven Phrase Struc-
ture Grammar [15], and is trained on a general English
corpus, the Penn Treebank [10]. That is, general lin-
guistic rules in Enju that transforms surface forms to
PASs have been acquired from tree banks of articles



in Wall Street Journal (WSJ). Furthermore, the prob-
abilistic model (Maximum Entropy Model) for select-
ing the most feasible PASs, corresponding interpreta-
tions, is also learned by the same corpora. Accompa-
nied with Enju, we use a part-of-speech tagger trained
on the GENIA corpus [7] that consists of tagged MED-
LINE abstracts.
As expected, the performance of Enju on sentences in
WSJ is better than on those in MEDLINE abstracts, but
rather surprisingly, the deterioration rate is found to be
very small. 83.7% of all PASs in text are correctly rec-
ognized for MEDLINE abstracts, tested on the GENIA
Treebank [5], while 87.2% for those in WSJ. This fact
shows that the linguistic rules embodied in a full parser
like Enju, together with probabilistic models learned
by ML, are mostly valid across different subject do-
mains and text types.

Pattern Extraction
From PASs which we obtained from a sentence tagged
with interacting protein pairs, we extract PAS patterns
based on the observed properties in the previous sec-
tion.

Extraction of Raw PAS Pattern After parsing, we
extract the smallest set (p0, p1, . . . , pn) of PASs which
are in inclusion relation and includes words that de-
note interacting proteins, and make it a raw pattern. If
an interacting protein is represented in more than one
word, we choose the last word as the representative.
The process to obtain a raw pattern (p0, p1, . . . , pn) is
as follows.
including(p) : PASs which include p as their argu-

ment or modify p

included(p) : PASs which p includes as its argu-
ments or modifies

1. pi = p0 is the PAS of a word correspondent to one
of interacting proteins, and we obtain candidates of
the pattern as the following process:

1-1. If pi is of the word of the other interacting protein,
(p0, . . . , pi) is a candidate of the pattern.

1-2. If not, make (a) pattern candidate(s) for
each pi+1 ∈ including(pi) ∪ included(pi) −
{p0, . . . , pi} by returning to 1-1.

2. Select the smallest pattern candidate as the raw PAS
pattern.

3. Substitute variables (Entity1, Entity2) for the predi-
cates of PASs correspondent to the interacting pro-
teins.

If an interaction representation includes only one pro-
tein (e.g. “Entity1 dimerization”), we treat the PAS

CD4MODARG 
moleculeofARG1ARG2 

withARG1ARG2      interactARG1 coreceptor 3322 ,,1111 22 region,
3344 theARG1 44non-polymorphicARG1 33 , ,

Entity2

Entity1p0
p1

p2 p3 p4p5 p6
CD4Entity1 coreceptor interacts with non-polymorphic re-
gions of the moleculesEntity2.

Figure 4: Extraction of a PAS Pattern

bindARG1 11ARG2 Entity1Entity2a
andARG1ARG2      11Entity2b, bindARG1ARG2 Entity1Entity2abindARG1ARG2 Entity1Entity2b

Entity1 bind Entity2a and Entity2b

Figure 5: Shortcut of a PAS Pattern

corresponding to the protein word as the raw pattern
and obtain the appropriate pattern by the next extend-
ing process (See the next subsection).
Figure 4 shows an example of extraction of a raw
PAS pattern. “CD4” and “molecules” are words rep-
resenting interacting proteins. First, we set the PAS of
“CD4” as p0. included(p0) includes the PAS of “core-
ceptor”, and set it as p1 (shown as a solid arrow). Next,
including(p1) includes the PAS of “interact” (shown
as a dotted arrow), so we set it as p2 (shown as the next
solid arrow). We continue similarly until we reach the
PAS of “molecules”. The result of the extracted raw
PAS pattern is shadowed PASs (p0, . . . , p6) with sub-
stituting “CD4” and “molecule” to variables Entity1
and Entity2.

Shortcut and Extension of PAS Patterns As shown
in the previous section, representations including ap-
positions by coordinations or parentheses are frequent
for protein-protein interactions. We enumerate pat-
terns for all pairs of interacting proteins in such rep-
resentations by dividing the raw PAS patterns and
shorten each pattern by substituting PASs of words
nearer to the interacting protein for PASs of the appos-
itive words. An example is shown in Figure 5. A pat-
tern for the interacting protein pair (Entity1, Entity2b)
is the lower one, obtained by substituting the PAS of



andARG1
betweenARG1 11ARG2

Entity111ARG2 Entity2
interaction

interaction between Entity1 and Entity2

Figure 6: Extension of a PAS Pattern

Entity2b for the PAS of Entity2a ( 1 ) in the PAS of
“bind”.
Furthermore, there are some cases that interacting pro-
teins are connected directly by a conjunction (e.g. “(in-
teraction between) Entity1 and Entity2”), or only one
protein participates in an interaction. These Entity-
Conjunction-Entity patterns and Entity patterns cause
a lot of errors, thus we extend PAS patterns to ensure
they include verbs or nouns other than interacting pro-
teins. We extend a PAS pattern by restarting Step 1
from the head PAS of the raw pattern to a verb or a
noun except interacting proteins.
Figure 6 illustrates an example. “Entity1” and “En-
tity2” correspond interacting proteins and are con-
nected by “and”. The head of “Entity1 and Entity2”
is “Entity1”, and we restart a process from here. The
PAS of “Entity1” is also an argument of the PAS of
“between”, so we step to “between”. Because “be-
tween” is not a verb or a noun, we then step to another
argument of “between” and it is the PAS of “interac-
tion”. “interaction” is a noun which is not interacting
proteins, thus the process ends here. Finally, we make
a PAS pattern that consists of shadowed PASs in the
figure.

Pattern Division
For generalization based on the observation of class
(2), we divide a pattern with only one verb into a ver-
bal component and two nominal components. A verbal
component consists of the verb and its next preposi-
tion if exists. Nominal components are the rest of the
pattern, each for each interacting protein word. For the
present implementation, we do not divide patterns with
more than one verb and ones without any verbs.
Figure 7 illustrates an example. The verbal component
consists of PASs of “interact” and “with”. The PASs
of “coreceptor” ( 1 ) and “region” ( 3 ) of the verbal
component are connectors to nominal components and
generalized to variables (Xnoun1 and Xnoun2). And
we mark “coreceptor” of the left nominal component
as connectable to (unifiable with) Xnoun of a verbal
component. Similarly, “region” of the right nominal

,Entity1MODARG 11 coreceptor , ofARG1ARG2 33Entity2
EntityMODARG 

withARG1ARG2      3322interactARG1 ,1122 region
withARG1ARG2      22interactARG1 ,22 Xnoun2coreceptorXnoun Xnoun1 ofARG1 EntityregionARG2 Xnoun

Nominal Component Verbal Component Nominal Component
Figure 7: Division of a PAS Pattern

component is marked as connectable.

Pattern Matching
To extract new protein-protein interactions, we match
obtained patterns to parsing results of sentences in new
input text. Because both patterns and parsing results
of input sentences are represented in PASs, pattern
matching is done by PAS matching: each PAS of the
patterns is checked whether it is able to be matched
(unified) to any PAS in the parsed sentences.
We use every combination of verbal and nominal com-
ponents as a pattern. Only PASs of nominal com-
ponents which are marked as connectable are unified
(connected) to Xnouns of verbal components. And we
enumerate PASs of input sentences to resolve apposi-
tions in the same way with Pattern Extraction.

Result
We used Aimed [2] as a source tagged corpus for ex-
traction rule construction and also a criterion of evalu-
ation of IE by the constructed rules. Aimed we used
consists of 199 Medline abstracts (1737 sentences1)
tagged for both protein interactions and protein names.
The abstracts were selected based on the Database of
Interacting Proteins (DIP, [19]). Labels such as “TI -
” and references are deleted from the sentences. We
used the tags for protein names as already given in in-
put, to separate the protein interaction extraction task
from the protein name recognition task.
We measured accuracy of the IE task by two criteria:
Word Unit and Abstract Unit. On Word Unit crite-
rion, all word pairs corresponding to tagged interact-
ing proteins have to be extracted (position-level mea-
sure). On Abstract Unit, a certain interacting pair has
to be extracted from any of the sentences in the abstract
(document-level measure).

1Among them, because of elapsed time, (i) we did not use
15 too long and/or complicated sentences for the rule con-
struction (but considered them as failure cases in the eval-
uation) and (ii) did not try matching for other 10 sentences
which are too complicated (treated them as failure cases in
the evaluation).



Table 4: Accuracy of IE task
Precision Recall F-measure

Word Unit 33.7% 33.1% 0.334
Abstract Unit 37.3% 45.3% 0.410

Resulting accuracy of the IE with the constructed rules
is shown in Table 4. We made 10-fold cross validation,
i.e. divided abstracts of Aimed into 10 sets, used each
one set for evaluation and the rest for construction of
extraction rules, and took average evaluation values of
the 10 tests. The values are calculated as follows:

Precision =
True Positive

True Positive+False Positive
(1)

Recall =
True Positive

True Positive+False Negative
(2)

F-measure =
2×Precision×Recall

Precision+Recall
(3)

1. Positive: extracted as an interacting protein pair by
the IE system.

2. Negative: not extracted

A. True: correct (i.e. true interacting proteins if ex-
tracted, not interacting proteins if not)

B. False: incorrect

Table 5 shows some of verbal and nominal components
of frequent occurrence in one of training sets. Most of
the verbal components, corresponding to classes (1) or
(2), are usable as patterns by themselves (class (1)).
“Entity1 be Entity2” is an example of verbal compo-
nents that become proper patterns only with proper
nominal components.

Discussion
We investigated half (10 abstracts) of the result on one
test set. The numbers of True/False Positive/Negative
based on Word Unit and error causes are shown in Ta-
ble 6. There were some major error causes, (A), (E),
(F–H), (I), and also not frequent but substantial ones,
(B), (C). Details of them and possible solutions are de-
scribed in the following:
Most of the False Positives were caused by (A) incor-
rect patterns, such as “Entity1 protein” and “Entity1
complex”, not as nominal components but acting as
stand-alone patterns like “Entity1 dimerization”, a pat-
tern of class (4). These patterns were constructed from
incorrect parsing result or the present naive pattern ex-
traction method which cannot extract adjective mod-
ifiers (classes (4c) and (5)). With little decrease of

recall, we can easily eliminate the patterns by testing
them on the corpus from which they are constructed: If
a pattern extracts more False Positives than True Posi-
tives, it should be eliminated. Expected gain of preci-
sion is about 30% in maximum which would make our
accuracy higher than the previous work with the same
corpus [2].
Many False Negatives were (E) caused by parsing er-
ror, which can affect both of pattern construction and
pattern matching. As the parser we used is now trained
only on the general English corpus, the Penn Treebank,
we can improve its accuracy by training it additionally
on the GENIA Treebank.
In addition, there were also problems that (F–H) nec-
essary pattern components did not occur in the corpus
for the pattern construction. The reason why our re-
call result for the same precision is lower than the pre-
vious work [2] is that the corpus we used is slightly
smaller than theirs and our PAS patterns are more pre-
cise on word relations than their surface word patterns
allowing gaps. Further pattern generalization (such as
generalization of “binding of Entity1 and Entity2” and
“binding of Entity1 to Entity2”) will gain more recall.
The lack of necessary patterns included (G1,H1) an-
other kind of problem in which our method could not
construct appropriate patterns with adjective modifiers
(classes (4c) and (5)). An example of the case is
for “Entity1 have Entity2 -binding property”: From
this example, our method constructed a verbal com-
ponent “have” and a nominal component “property”,
but the appropriate nominal one is “-binding property”.
To solve this problem, distinction of common words
(“have” and “property”) and key words (“-binding”) is
needed.
For now, we consider (I) too complicated sentences
(sentences with too many coordinations or parenthe-
ses) as IE failure cases because of elapsed time. These
sentences were very few (10 in 1737 sentences), but
might cause many False Negatives. Thus improvement
in speed of IE (pattern matching) process is required.
On the other hand, there were a few but substantial
False examples. One kind of them was (B) False Pos-
itives which required non-local information to distin-
guish correctly. An example is “binding of EntityA and
EntityB to EntityC”. There was a pattern “binding of
Entity1 and Entity2” which extracts correct interacting
protein pairs, thus it extracted a pair (EntityA, EntityB).
But for this example, correct pairs are (EntityA, Enti-
tyC), (EntityB, EntityC) based on a pattern “binding of
Entity1 to Entity2” and enumeration by a coordination.
We need to introduce priority order on pattern match-
ing, such as matching length order, to solve this prob-
lem. And there are other cases which require infor-
mation in different sentences. To exclude these cases,



Table 5: Occurred Components of PAS Patterns
Verbal Components Nominal Components

37 Entity1 interact with Entity2 15 domainXnoun of Entity1
22 Entity1 bind to Entity2 12 Entity1 proteinXnoun

19 Entity1 be Entity2 8 Entity1 complexXnoun

18 Entity1 bind Entity2 7 ligandXnoun for Entity1
10 Entity1 interact Entity2 5 structureXnoun of Entity1
10 Entity1 associate with Entity2 5 regionXnoun of Entity1

Numbers denote occurrence times in a test corpus.

Table 6: Number of True/False Positive/Negative and Error Causes
True Positive 21
False Positive 22

(A) Incorrect Not-Divided Pattern 17
(B) Need Information of Other Parts/Sentences 3
(C) Need Negation Handling 1
(D) Test Corpus Error 1

False Negative 44
(E) Parsing Error 9
(F) Verbal Component Not Occurred in Training Corpus 5
(G) Nominal Component Not Occurred in Training Corpus 8

(G1) Need Further Extending (2)
(H) Not-Divided Pattern Not Occurred in Training Corpus 13

(H1) Need Further Extending (1)
(I) Too Complicated for Matching Process 8
(J) Representative Word Error for the Protein Name 1
(K) Test Corpus Error 3

One error may be caused by more than one cause, thus sums of error causes differ from the number of False Negative.

processing multiple sentences is required.
There was also a False Positive which required han-
dling of a negative representation, “Entity1 did not as-
sociate with Entity2”. We need to gather words for
such negative representations and refer to them in IE
process.

Conclusion

We proposed to use predicate-argument structures
(PASs) for automatic construction of patterns as IE
rules. Because PASs abstract syntactical variants for
the same information, patterns based on PASs are more
generalized than those on surface forms of words. In
addition, grounded on observation that most patterns
can be divided into some components, we divided the
patterns into components for generalization. On ex-
periments of extraction of protein-protein interactions,
we obtained 37.3% precision and 45.3% recall with-
out any manual intervention. Extending pattern gener-
alization to non-syntactical variations and filtering in-
correct patterns by machine learning are planned.

Acknowledgements:
This work was partially supported by Grant-in-Aid for Sci-
entific Research on Priority Areas (C) “Genome Information
Science” from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

Address for Correspondence:
Akane Yakushiji
University of Tokyo
Department of Computer Science
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

References
[1] Christian Blaschke and Alfonso Valencia. The Frame-

Based Module of the SUISEKI Information Extraction
System. IEEE Intelligent Systems, 17(2):14–20, 2002.

[2] Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Ed-
ward M. Marcotte, Raymond J. Mooney, Arun Kumar
Ramani, and Yuk Wah Wong. Comparative Experi-
ments on Learning Information Extractors for Proteins
and their Interactions. Journal Artificial Intelligence in
Medicine (Special Issue on Summarization and Infor-
mation Extraction from Medical Documents), 2004.

[3] Nikolai Daraselia, Sergei Egorov, Andrey Yazhuk,
Svetlana Novichkova, Anton Yuryev, and Ilya Mazo.
Extracting Protein Function Information from MED-
LINE Using a Full-Sentence Parser. In Proc. the Sec-



ond European Workshop on Data Mining and Text Min-
ing for Bioinformatics, pages 15–21, 2004.

[4] Carol Friedman, Pauline Kra, Hong Yu, Michael
Krauthammer, and Andrey Rzhetsky. GENIES: a
natural-language processing system for the extraction
of molecular pathways from journal articles. Bioinfor-
matics, 17(Suppl. 1):S74–S82, 2001.

[5] GENIA Project. GENIA Treebank, 2004. http://www-
tsujii.is.s.u-tokyo.ac.jp/GENIA/topics/Corpus/GTB.html.

[6] Minlie Huang, Xiaoyan Zhu, Yu Hao, Donald G.
Payan, Kunbin Qu, and Ming Li. Discovering patterns
to extract protein-protein interactions from full texts.
Bioinformatics, 20(18):3604–3612, 2004.

[7] Jin-Dong Kim, Tomoko Ohta, Yuka Teteisi, and
Jun’ichi Tsujii. GENIA corpus – a semantically an-
notated corpus for bio-textmining. Bioinformatics,
19(suppl. 1):i180–i182, 2003.

[8] Asako Koike, Yoshiyuki Kobayashi, and Toshihisa
Takagi. Kinase Pathway Database: An Integrated
Protein-Kinase and NLP-Based Protein-Interaction Re-
source. Genome Research, 13:1231–1243, 2003.

[9] G. Leroy and H. Chen. Filling Preposition-Based Tem-
plates to Capture Information from Medical Abstracts.
In PSB 7, pages 350–361, 2002.

[10] Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger. The
Penn Treebank: Annotating predicate argument
structure. In Proc. AAI ’94, 1994.

[11] MUC-6. Proc. the Sixth Message Understanding Con-
ference (MUC-6), 1995.

[12] Toshihide Ono, Haretsugu Hishigaki, Akira Tanigami,
and Toshihisa Takagi. Automated extraction of infor-
mation on protein-protein interactions from the biolog-
ical literature. Bioinformatics, 17(2):155–161, 2001.

[13] J. C. Park, H. S. Kim, and J. J. Kim. Bidirectional
Incremental Parsing for Automatic Pathway Identifica-
tion with Combinatory Categorial Grammar. In PSB 6,
pages 396–407, 2001.

[14] J. Pustejovsky, J. Castan o, J. Zhang, M. Kotecki, and
B. Cochran. Robust Relational Parsing Over Biomedi-
cal Literature: Extracting Inhibit Relations. In PSB 7,
pages 362–373, 2002.

[15] Ivan A. Sag and Thomas Wasow. Syntactic Theory.
CSLI publications, 1999.

[16] Kiyoshi Sudo, Satoshi Sekine, and Ralph Grishman.
An improved extraction pattern representation model
for automatic IE pattern acquisition. In Proc. ACL
2003, pages 224–231, 2003.

[17] Joshua M. Temkin and Mark R. Gilder. Extraction
of protein interaction information from unstructured
text using a context-free grammer. Bioinformatics,
19(16):2046–2053, 2003.

[18] Tsujii laboratory. Enju - A practical HPSG parser,
2005. http://www-tsujii.is.s.u-tokyo.ac.jp/enju/.

[19] I. Xenarios, E. Fernandez, L. Salwinski, X. J. Duan,
M. J. Thompson, E. M. Marcottes, and D. Eisenberg.
DIP: The database of interacting proteins: 2001 update.
In Nucleic Acids Research, volume 29 (1), pages 239–
241, 2001.

[20] Akane Yakushiji, Yusuke Miyao, Yuka Tateisi, and
Jun’ichi Tsujii. Biomedical information extraction
with predicate-argument structure patterns. In Proc.
the First International Symposium on Semantic Mining
in Biomedicine, 2005. to appear.

[21] Akane Yakushiji, Yuka Tateisi, Yusuke Miyao, and
Jun’ichi Tsujii. Event Extraction from Biomedical Pa-
pers Using a Full Parser. In PSB 6, pages 408–419,
2001.

[22] Roman Yangarber, Ralph Grishman, Pasi Tapanainen,
and Silja Huttunen. Automatic Acquisition of Domain
Knowledge for Information Extraction. In Proc. COL-
ING 2000 - Volume 2, pages 940 – 946, 2000.


