High-precision biological event extraction with a concept recognizer

K. Bretonnel Cohen*, Karin Verspoor*, Helen L. Johnson, Chris Roeder, Philip V. Ogren, William A. Baumgartner Jr., Elizabeth White, Hannah Tipney, and Lawrence Hunter

U. Colorado Denver School of Medicine

*These two authors contributed equally to the work reported here

Introduction

- All three tasks approached as concept recognition and analysis using the OpenDMAP semantic parser
- Manually-written rules
- Achieved highest precision for two of the three tasks; recall was low

- Named entity recognition
 - Proteins: provided by organizers
 - Other semantic classes:
 - LingPipe with GENIA model
 - ConceptMapper (Gene Ontology cellular components, Cell Type Ontology, BRENDA Tissue Ontology, and Sequence Ontology)
 - Only modifications: remove *cell* from CTO and add synonym nuclear to GOCC

- Coördination
 - Retrained OpenNLP constituent parser with...
 - 500 abstracts from beta version of GENIA treebank
 - 10 full-text articles from the CRAFT corpus
 - Distributed meaning assumed
 - Used for proteins only

- OpenDMAP (Hunter et al. 2008)
 - Uses ontology as central organizing structure
 - Commitment to using community-consensus ontologies (mostly OBO)
 - Semantic grammars allow mixing of terminals and semantically typed non-terminals
 - Context-free power with variable ordering
 - Slot fillers constrained by ontology

```
Protein_transport :=

[TRANSPORTED-ENTITY] translocation

@(from {DET}? [TRANSPORT-ORIGIN])

@(to {DET}? [TRANSPORT-DESTINATION])
```

Bax translocation to mitochondria from the cytosol

Bax translocation from the cytosol to the mitochondria

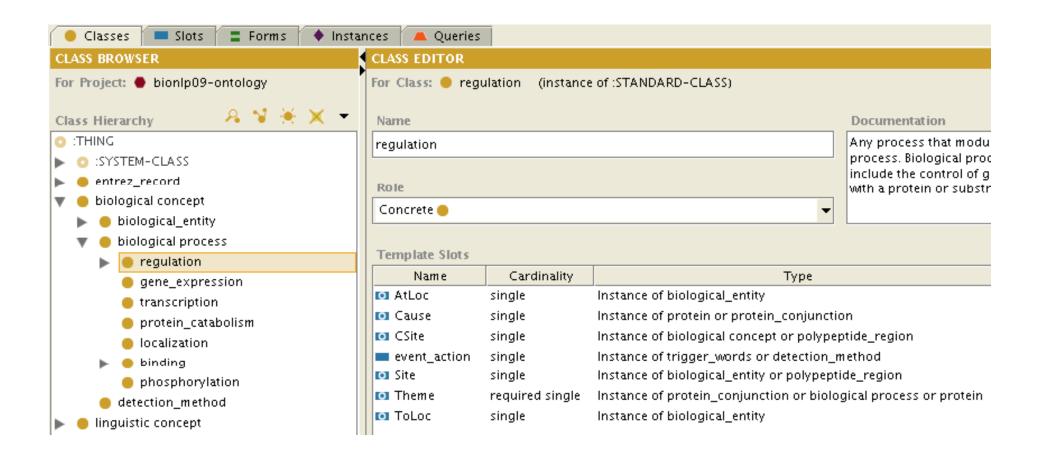
```
Protein transport :=
[TRANSPORTED-ENTITY] translocation
@(from {DET}? [TRANSPORT-ORIGIN])
@(to {DET}? [TRANSPORT-QESTINATION])
          Protein
                             Cellular Component
      (Sequence Ontology)
                              (Gene Ontology)
```

- All event types represented as frames
 - Elements from ontology constrain every slot

EVENT TYPE: REGULATION

AtLoc: instance of biological_entity

Cause: instance of protein


CSite: instance of biological concept or polypeptide region

Event_action: instance of trigger_word or detection_method

Site: instance of biological concept or polypeptide region

Theme: instance of protein or biological process

ToLoc: instance of biological entity

- All event types represented as frames
 - Elements from ontology constrain every slot

Sequence Ontology

EVENT TYPE: REGULATION

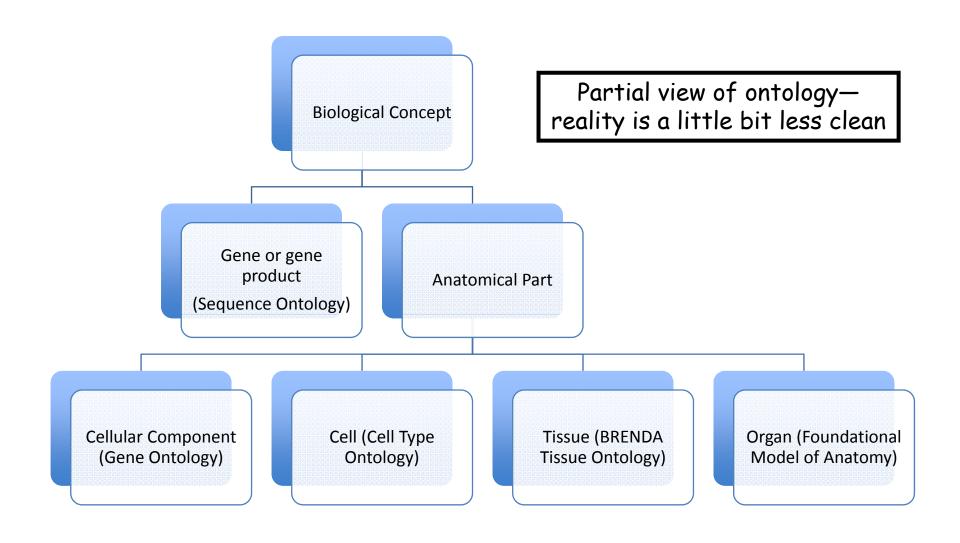
AtLoc: instance of biological entity

Cause: instance of protein

CSite: instance of biological_concept or polypeptide_region

Event_action: instance of trigger_word or detection_method

Site: instance of biological concept or polypeptide, region


Theme: instance of protein or biological process

ToLoc: instance of biological entity

Cell Cycle Ontology

Gene Ontology

Molecular Interaction Ontology

Event type	Site	AtLoc	ToLoc
Binding	protein domain (SO), binding site (SO), DNA (SO), chromosome (SO)		
Gene expression	gene (SO), biological entity (CCO)	tissue (BTO), cell type (CTO), cellular component (GO)	
Localization		cellular component (GO)	cellular component (GO)
Phosphorylation	amino acid (FMA), polypeptide region (SO)	BTO: BRENDA T	
Protein catabolism	cellular component (GO)	CCO: Cell Cycle CTO: Cell Type C GO: Gene Ontolo	Ontology
Transcription	gene (SO), biological entity (CCO)	SO: Sequence O	

Manual pattern-writing

- Before availability of training data: based on native speaker intuitions, examples from PubMed, and variations on same, as in Cohen et al. (2004)
- After release of training data: based on examination of corpus data, targeting high-frequency predicates only
- Nominalizations predominated; used insights from Cohen et al. (2008) regarding Theme placement
- Protein binding rules re-used from BioCreative II proteinprotein interaction task
- Eschewed use of wildcards

	Our system		Best team		Best P/R/F				
	Р	R	F	Р	R	F	Р	R	F
Task 1	71.81	13.45	22.66	58.48	46.73	51.95	71.81	46.73	51.95
Task 2	70.97	13.25	43.12	54.08	35.86	43.12	70.97	35.86	43.12
Task 3	57.40	12.33	20.30	60.83	32.68	42.52	60.83	32.68	42.52

Task 1: P 10 points higher than second-highest

Task 2: P 14 points higher than second-highest

Task 3: P 3.4 points lower than highest (3/6)

Unofficial results: contribution of bug repairs

	Р	R	F
Official results	71.81	13.45	22.66
With bug fixes	67.19	17.38	27.10

Still the highest precision (#2 was 62.21)

- Contribution of coördination-handling
 - Bug-fixed results: F 27.62 (Task 1)
 - Without coördination-handling: F 24.72
 - Decrease in F of 2.9 without coördinationhandling

- Error analysis: false negatives
 - Intervening material between trigger words and arguments
 - Coördination of things other than protein names
 - Low coverage of trigger words
 - Anaphora and coreference
 - Appositive gene names and symbols

 Intervening material between trigger words and arguments

to efficiently [express] in developing thymocytes a mutant form of the [NF-kappa B inhibitor] (PMID 10092801)

Solutions: use dependency syntax, multiword expressions

Coördination of things other than protein names

[transcription] and subsequent synthesis and secretion of [galectin-3] (PMID 8623933)

- Low coverage of trigger words
 - Sharing of some trigger words across multiple event types
 - Time constraints of the shared task
- Similarly, limited attempts to deal with intervening material

Anaphora and coreference

Although 2 early lytic transcripts, [BZLF1] and [BHRF1], were also detected in 13 and 10 cases, respectively, the lack of ZEBRA staining in any case indicates that these lytic transcripts are most likely [expressed] by rare cells in the biopsies entering lytic cycle (PMID 8903467)

Appositive gene names and symbols

```
Rule: {gene_expression} :=
    expression of {det}? [Theme];
```

[expression] of Fas ligand ([FasL]) (PMID 10092076)

Intervening material

False Positive Analysis

-Training data -Biologist examined all events scored as FP in 10 documents per event type - 42% judged as

actually TP

	Analyzed	TP	FP
Gene Expression	11	7	4
Binding	21	15	6
Transcription	4	1	3
Protein Catabolism	1	1	0
Localization	4	1	3
Phosphorylation	3	2	1
Regulation	13	1	12
Positive Regulation	18	7	11
Negative Regulation	13	2	11

False Positive Analysis

Key: trigger word Theme

- Incorrect Theme chosen:
 - "IL-10 production by gp41"[10089566]
 - "induction of I kappa B alpha phosphorylation" [7499266]
- Missed a required entity:
 - "induction of IL-10 production by gp41"[10089566]
- Misrecognized trigger word:
 - "upstream of the GM-CSF transcription initiation site" [7478534]
 - "effects of IL-11 were <u>associated</u> with reduced NF-kappaB activation"[10411003]
 - "up-regulation of CD80 Ag" [8690900]
- Sentence parse error:
 - "was suppressed by alpha B2. Coexpression of alpha B1"[7605990]

Discussion and Conclusions

- Recall is a function of the <u>rule set</u>, not of the approach
- Can this high-precision, apparently low-recall approach scale to practical performance levels?
 - Redundancy in individual papers
 - These results make no use of syntactic analysis
 - Exploring rapid adaptation to new tasks
 - Rule/template inheritance
 - Extend coördination handling beyond proteins
 - Using dependency parses
 - Mappings from frames to WordNet for better trigger word coverage

Discussion and Conclusions

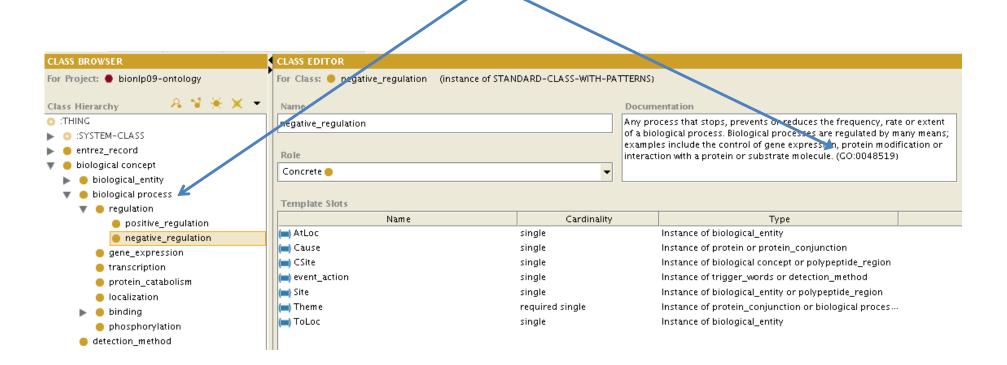
 Not just building system for shared tasks input to other tasks, such as high-throughput data analysis, which it has proven useful for

Acknowledgements

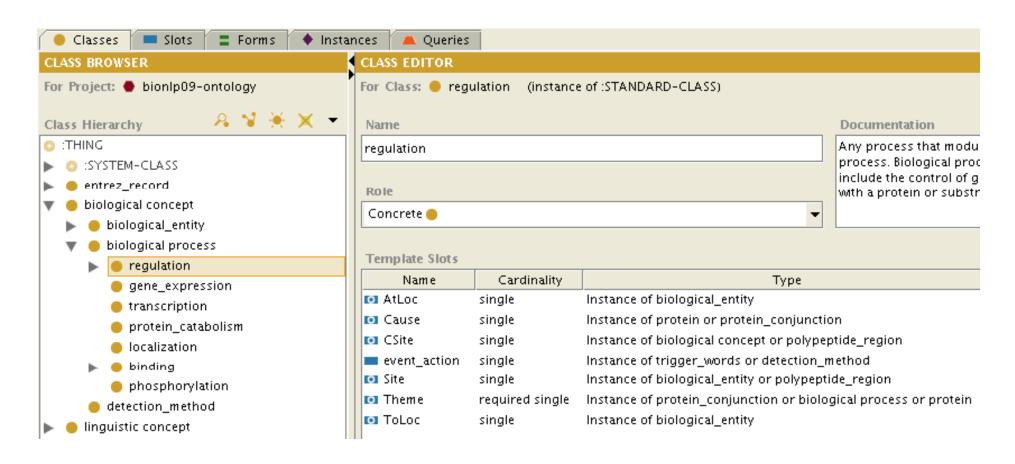
- Michael Bada for help with loading the Sequence Ontology into Protégé
- Alias-I for LingPipe
- Anonymous ConceptMapper creator
- Shared task organizers for organizing the task and answering many questions
- Work supported by:
 - NIH grants R01LM009254, R01GM083649, and R01LM008111 to Larry Hunter
 - NIH grant T15LM009451 to Philip Ogren

Availability

OpenDMAP semantic parser and rule set:

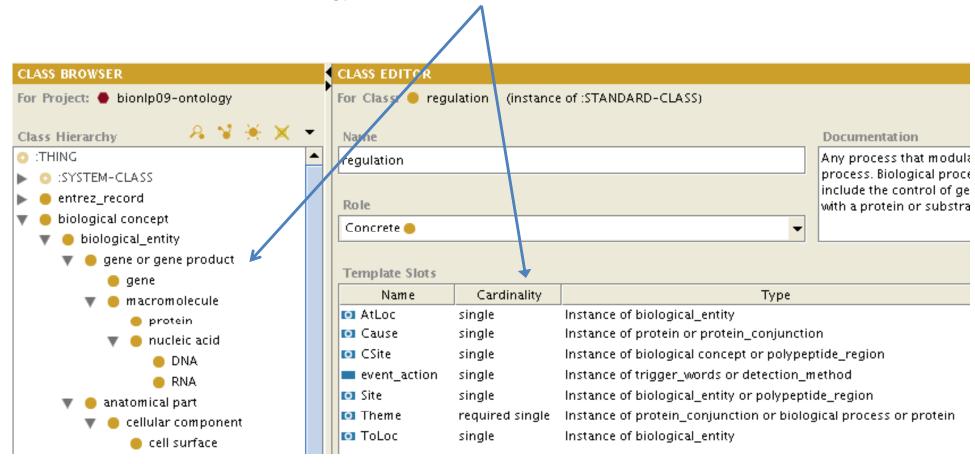

bionlp.sourceforge.net

Questions to be prepared for


- What does it mean to have an ontology be the central organizing structure of a semantic parser?
- Why didn't we get the top precision on Task
 3?
- You didn't say anything about how you tackled negation and speculation

Ontology as the central organizing principle

Ontology specifies the targets of information extraction



Ontology as the central organizing principle

Ontology as the central organizing principle

Ontology constrains slot fillers in rules

- Negation and speculation handled by string literals
- Negation: absence of, failure to, not KEYWORD
- Speculation: research, study, examine, investigate, suggests, unknown, seems
- Heavy use of wildcards