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Abstract

Dictionary-based protein name recognition is the first step for practical informa-
tion extraction from biomedical documents because it can provides ID information
of recognized terms. However, dictionary based approaches have two fundamental
difficulties: (1) false recognitions mainly caused by short names; (2) low recall due
to spelling variation. In this paper, we tackle the former problem by using a ma-
chine learning method to filter out false positives. As for the latter, we present two
methods for alleviating the problem of spelling variation. One is to use an approx-
imate string searching method, and the other is to expand the dictionary by using
the probabilistic variant generator which we propose in this paper. Experimental
results using the GENIA corpus show that the filtering using a naive Bayes classifier
greatly improves precision with slight loss of recall. The combination of the filtering
and the dictionary expansion by the variant generator achieved an F-measure of
67%.

Key words: protein name recognition, naive Bayes classifier, approximate string
search, spelling variation
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1 Introduction

The rapid increase of machine readable biomedical texts (e.g. MEDLINE)
makes automatic information extraction from those texts much more attrac-
tive. Especially extracting information of protein-protein interactions from
MEDLINE abstracts is one of the most important tasks today (1; 2; 3).

In order to extract information of proteins from a text, one has to first rec-
ognize protein names appearing in the text. This kind of problem has been
extensively studied in the field of natural language processing as named entity
recognition tasks. The most popular approach is to train the recognizer on
an annotated corpus by using a machine learning algorithm, such as Hidden
Markov Models, support vector machines (SVMs) (4), and maximum entropy
models (5). In the machine learning framework, the task of the classifier is to
determine the text regions corresponding to protein names.

Ohta et al. provided the GENIA corpus (6), an annotated corpus of MED-
LINE abstracts, which can be used as a gold-standard for evaluating and train-
ing named entity recognition algorithms. The corpus has fostered research on
machine learning techniques for recognizing biological entities in texts (7; 8; 9).

However, the drawback of those machine learning approaches is that they do
not provide ID information of recognized terms. For the purpose of information
extraction of proteins, ID information of recognized proteins, such as GenBank
1 ID or SwissProt 2 ID, is indispensable to integrate extracted information
with relevant data in other information sources.

On the other hand, dictionary-based approaches, which we present in this
paper, intrinsically provide ID information because they recognize a term by
searching the most similar (or identical) one in the dictionary to the target re-
gion. This advantage makes dictionary-based approaches particularly useful as
the first step for practical information extraction from biomedical documents
(3).

Dictionary-based approaches, however, have two fundamental difficulties. One
is a large number of false positives mainly caused by short names, which sig-
nificantly degrade overall precision. Although this problem can be avoided by
excluding short names from the dictionary, such a solution makes it impossible
to recognize short protein names. We tackle this problem by incorporating a
machine learning technique for filtering out false positive. Each protein name
candidate is checked whether it is really protein name or not by a classifier
trained on an annotated corpus.

1 GenBank is one of the largest genetic sequence databases.
2 The Swiss-Prot is an annotated protein sequence database.
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The other problem in dictionary-based approaches comes from the fact that
biomedical terms have many spelling variations. For example, the protein name
“NF-Kappa B” has many spelling variants such as “NF Kappa B”, “NF kappa
B” “NF kappaB” and “NFkappaB”. Exact matching techniques regard these
terms as completely different terms, which results in failing to find protein
names written in varied forms.

As for the problem of spelling variation, we present two solutions in this paper.
One is to use approximate string searching techniques in which the surface-
level similarity of strings is considered. The other is to expand the dictionary
in advance by using the probabilistic variant generator which we propose in
this paper. To show their effectiveness, the experimental results on the GENIA
corpus is presented.

This paper is organized as follows. Section 2 describes the overview of our
protein name recognition method. Section 3 explains the approximate string
searching algorithm for alleviating the problem of spelling variation. As an
alternative solution to the problem, Section 4 illustrates the probabilistic vari-
ant generator which is used for expanding the dictionary. Section 5 describes
how to filter out false recognitions by a machine learning method. Section 6
presents experimental results using the GENIA corpus. Some related work is
described in Section 7. Finally, Section 8 offers some concluding remarks.

2 Method Overview

Our protein name recognition method consists of two phases. The first phase
is candidate recognition phase and the second phase is filtering phase.

• Candidate recognition phase
The task of this phase is to find protein name candidates appearing in

the text using a given dictionary. The protein IDs can be associated with
each candidate in this phase.

The most straightforward way to exploit a dictionary is to use exact
matching algorithms. However, as mentioned earlier, the existence of many
spelling variations for the same protein name makes exact matching less
effective. By exact matching algorithms, one cannot find the protein names
that appear in a slightly different form from the canonical names in the
dictionary.

We propose two solutions to this problem. One is to use an approximate
string searching algorithm instead of exact matching algorithms, which is
presented in Section 3. The other is to expand the dictionary in advance by
using the variant generator, which is presented in Section 4.

• Filtering phase
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Fig. 1. Dynamic programming matrix.

One of the serious problems of dictionary-based recognition is a large
number of false recognitions mainly caused by short entries in the dictionary.
For example, the dictionary constructed from GenBank could contain the
entry “NK”. However, the word “NK” is often used as a part of the term
“NK cells”. In this case, “NK” is an abbreviation of “natural killer” and
is not a protein name. Therefore this entry makes a large number of false
recognitions leading to low precision.

One solution to this problem is to check each candidate whether it is
really protein name or not. In other words, Each protein name candidate
is classified into “accepted” or “rejected” by a machine learning algorithm.
The classifier uses the context of the term and the term itself as the features
for the classification. Only “accepted” candidates are recognized as protein
names in the final output. Section 5 describes the detail of the classification
algorithm in this phase.

In the following sections, we describe the details of the methods used in these
phases.

3 Candidate Recognition by Approximate String Searching

One way to deal with the problem of spelling variation is to use a kind of
‘elastic’ matching algorithm, by which a recognition system scans a text to find
a similar term to (if any) a protein name in the dictionary. We need a similarity
measure to do such a task. The most popular measure of similarity between
two strings is edit distance, which is the minimum number of operations on
individual characters (e.g. substitutions, insertions, and deletions) required to
transform one string of symbols into another. For example, the edit distance
between “EGR-1” and “GR-2” is two, because one substitution (1 for 2) and
one deletion (E) are required.
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To calculate the edit distance between two strings, we can use a dynamic
programming technique. Figure 1 illustrates an example. For clarity of pre-
sentation, all costs are assumed to be 1. The matrix C0..|x|,0..|y| is filled, where
Ci,j represents the minimum number of operations needed to match x1..i to
y1..j. This is computed as follows (10)

Ci,0 = i (1)

C0,j = j (2)

Ci,j = if (xi = yj) then Ci−1,j−1 (3)

else 1 + min(Ci−1,j, Ci,j−1, Ci−1,j−1)

The calculation can be done by either a row-wise left-to-right traversal or a
column-wise top-to-bottom traversal.

There are some algorithms that run faster than the dynamic programming
method for computing uniform-cost edit distance, where the weight of each
edit operation is constant within the same type (11). However, what we expect
is that the distance between “EGR-1” and “EGR 1” will be smaller than that
between “EGR-1” and “FGR-1”, while the uniform-cost edit distances of them
are equal.

The dynamic programming based method is flexible enough to allow us to
define arbitrary costs for individual operations depending on a letter being
operated. For example, we can make the cost of the substitution between a
space and a hyphen much lower than that of the substitution between ‘E’ and
‘F’. Therefore, we use the dynamic programming based method for our task.

Table 1 shows the cost function used in our experiments. Both insertion and
deletion costs are 100 except for spaces and hyphens. Substitution costs for
similar letters are 10. Substitution costs for the other different letters are 50.

3.1 String Searching

What we have described in the previous section is a method for calculating
the similarity between two strings. However, what we need when trying to
find proteins in texts is approximate string searching in which the recognizer
scans a text to find a similar term to (if any) a term in the dictionary. The
dynamic programming based method can be easily extended for approximate
string searching.

The method is illustrated in Figure 2. In this case, the protein name to be
matched is “EGR-1” and the text to be scanned is “encoded by EGR include”.
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Table 1
Cost function.

Operation Letter Cost

insertion a space or a hyphen 10

other letters 100

deletion a space or a hyphen 10

other letters 100

substitution a letter for the same letter 0

a numeral for a numeral 10

a space for a hyphen 10

a hyphen for a space 10

a capital letter for the

corresponding small letter 10

a small letter for the

corresponding capital letter 10

other letters 50
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76555432122345555765555551

6

6

6

6

d

7

7

7

7

e
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Fig. 2. String searching using a dynamic programming matrix.

String searching can be done by just setting the elements corresponding sep-
arators (e.g. space) in the first row to zero. After filling the whole matrix,
one can find that “EGR-1” can be matched to this text at the place of “EGR
1” with cost 1 by searching for the lowest value in the bottom row and then
backtracing to the top row along the lowest-cost path.

To take into account the length of a term, we use a normalized cost, which is
calculated by dividing the cost by the length of the term:

(normalized cost) =
(cost) + α

(length of the term)
(4)
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where α is a constant value 3 . When the costs of two terms are the same, the
longer one is preferred due to this constant.

To recognize a protein name in a given text, we perform the above calculation
for every term contained in the dictionary and select the term that has the
lowest normalized cost. If the cost is lower than the predefined threshold, the
corresponding range in the text is recognized as a protein name candidate.

3.2 Implementation Issues for String Searching

A naive way for string searching using a dictionary is to conduct the procedure
described in the previous section one by one for every term in the dictionary.
However, since the size of a protein name dictionary is usually large (∼ 105),
this naive way requires too much computational cost to deal with a large
amount of documents.

Navarro (12) have presented a way to reduce redundant calculations by con-
structing a trie of the dictionary. The trie is used as a device to avoid repeating
the computation of the cost against same prefix of many patterns. Suppose
that we have just calculated the cost of the term “EGR-1” and next we have
to calculate the cost of the term “EGR-2”, it is clear that we do not have
to re-calculated the first four rows in the matrix (see Figure 2). They also
pointed out that it is possible to determine, prior to reaching the bottom of
the matrix, that the current term cannot produce any relevant match: if all the
values of the current row are larger than the threshold, then a match cannot
occur since we can only increase the cost or at best keep it the same.

4 Expanding Dictionary by Probabilistic Variant Generator

An alternative way to alleviate the problem of spelling variation is to expand
each entry in the dictionary in advance. For example, if you have the term
“EGR-1” and the rule that spaces and hyphens are interchangeable, you can
expand this entry to the two entries “EGR-1” and “EGR 1”. With the ex-
panded dictionary, you can find protein names written in varied forms simply
by using exact matching algorithms.

However, developing rules for expanding terms is difficult and laborious. In
addition, a lot of protein names consisting of many words are present. Suppose
that we have the term “nuclear factor of activated T cells” and the rule that
spaces and hyphens are interchangeable. The number of possible variants is

3
α was set to 0.4 in our experiments.
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Fig. 3. Probabilistic variant generation. Numerals inside parentheses are generation
probabilities, and those along the edges are operation probabilities.

32 because the term has five spaces. If we have another rule that the head of a
word can be capitalized, the number of possible variants becomes prohibitively
large.

To solve these problems, we propose a method to generate only “likely”
spelling variants. Our method not only generates spelling variants but also
gives each variant a generation probability that represents the plausibility of
the variant. Therefore, one does not receive a prohibitive number of unneces-
sary variants by setting the threshold of generation probability.

4.1 Probabilistic Variant Generator

4.1.1 Generation Probability

The generation probability of a variant is defined as the probability that the
variant can be generated through a sequence of operations. Each operation
has an operation probability that represents how likely it will occur. Assuming
independence among the operations, the generation probability of a variant
can be formalized in a recursive manner,

PX = PY × Pop, (5)

where PX is the generation probability of variant X, PY is the generation
probability of variant Y from which variant X is generated, and Pop is the
probability of the operation by which Y is transformed into X.

Figure 3 shows an example of the generation process, which can be represented
as a tree. Each node represents a generated variant and its probability. Each
edge represents an operation and its probability. The root node corresponds to
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the input term and the generation probability of the root node is 1 by defini-
tion. We can obtain the variants of an input term in order of their generation
probabilities by growing a tree in a best-first manner.

4.1.2 Operation Probability

To calculate the generation probabilities in our formalization, we need the
probability of each operation.

We used three types of operations for the generation mechanism:

• Substitution
Replace a character with another character.

• Deletion
Delete a character.

• Insertion
Insert a character.

These types of operations are motivated by the ones used in approximate
string matching. We consider character-level contexts in which an operation
occurs, and we estimate the probability of the operation from a large number
of pairs of spelling variations.

An operation probability is defined as the probability that the operation will
occur in a given context. First, we represent contexts using the neighboring
characters of the operation. The following seven types of contexts are used in
this paper. They differ in relative position to the target and in how much the
context is specified:

• the target letter and the preceding two letters.
• the target letter and the preceding letter.
• the target letter and the following letter.
• the target letter and the following two letters.
• the target letter, the preceding letter and the following letter.
• the target letter, the preceding two letters and the following two letters.
• the target letter only.

For an operation of a substitution or a deletion, the target indicates a letter in
the string. For an operation of an insertion, the target indicates a gap between
two letters. For example, if the original string is “c-Rel” and the variant is
“c-rel”. The operation is a substitution of ‘R’ with ‘r’. The rules obtained
from this example are shown in Table 2. They correspond to the seven types
of aforementioned context. The first rule indicates that if the letter ‘R’ is
preceded by the string “c-”, then one can replace the letter with ‘r’.
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Table 2
Example of operation rules.

Left Target Right Operation

Context Context

c- R * Replace the target with ‘r’

- R * Replace the target with ‘r’

* R e Replace the target with ‘r’

* R el Replace the target with ‘r’

- R e Replace the target with ‘r’

c- R el Replace the target with ‘r’

* R * Replace the target with ‘r’

Asterisks indicate a wild card.

The next step is estimating the probability of each rule. The probability should
represent how likely the operation will occur in a given context.

We estimate the probabilities from a large number of pairs of spelling variants.
In this paper, a pair of spelling variants is defined as follows.

• The two strings convey the same meaning.
• The edit distance between the two strings is 1. In other words, One string

must be able to transform to the other in one operation, and vice versa.

“c-Rel” and “c-rel” is an example of a pair of spelling variants. This example
contains two operations, the substitution of ‘R’ with ‘r’ and the substitution
of ‘r’ with ‘R’.

We acquire such kind of variant pairs from UMLS Metathesaurus (13). The
thesaurus provides a huge number of biomedical terms and their semantic IDs.
We can obtain variant pairs by collecting protein name pairs having the same
semantic ID. Examples of the entries in the UMLS Metathesaurus are shown
in Table 3. From the protein names in the table, we can obtain the following
variant pairs:

{“gp140 v fms”, “gp140 v-fms”}

{“v-fms Protein, “v fms Protein”}

Once we have obtained a large set of variant pairs, we can estimate the oper-
ation probabilities by using the following equation.

Pop = P (operation|context) (6)
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Table 3
A part of UMLS Metathesaurus.

Semantic ID Protein name

: :

C0079930 Oncogene Protein gp140(v-fms)

C0079930 Oncogene protein GP140, V-FMS

C0079930 fms Oncogene Product gp140

C0079930 fms Oncogene Protein gp140

C0079930 gp140(v-fms)

C0079930 gp140 v fms

C0079930 gp140 v-fms

C0079930 v-fms, gp140

C0079930 v-fms Protein

C0079930 V-FMS protein

C0079930 v fms Protein

C0079930 Oncogene protein V-FMS

C0079930 GP140 V-FMS protein

: :

≈
f(context, operation) + 1

f(context) + 2
, (7)

where f(context) is the frequency of the occurrence of the context, and f(context, operation)
is the frequency of the simultaneous occurrence of the context and operation
in the set of variant pairs. We adopted Laplace’s smoothing (adding 1 to the
numerator and 2 to the denominator).

4.1.3 Generation Algorithm

Once the rules and their probabilities are learned, we can generate variants
from an input term using those rules.

The whole algorithm for variant generation is given below. Note that V rep-
resents the set of generated terms.

(1) Initialization
Add the input term to V .

(2) Selection
Select a term and an operation to be applied to it so that the generation
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probability of the generated term will be the highest possible.
(3) Generation

Generate a new term using the term and the operation selected in Step
2. Then, add the generated term to V .

(4) Repeat
Go back to Step 2 until the termination condition is satisfied.

In the generation step, the system applies the rule whose context matches any
part of the string. If multiple rules are applicable, the rule that has the highest
operation probability is used.

Because this algorithm generates variants in order of their generation prob-
abilities, the termination condition can be that the generation probability of
the generated variant is below the predefined threshold or that the number of
generated variants exceeds the predefined threshold.

5 Filtering Candidates by a Naive Bayes Classifier

In the filtering phase, we use a classifier trained on an annotated corpus to
suppress false recognition. The objective of this phase is to improve precision
without the loss of recall.

We conduct binary classification (“accept” or “reject”) on each candidate.
The candidates that are classified into “rejected” are filtered out. In other
words, only the candidates that are classified into “accepted” are recognized
as protein names in the final output.

In this paper, we use a naive Bayes classifier for this classification task.

5.1 Naive Bayes classifier

The naive Bayes classifier is a simple but effective classifier which has been
used in numerous applications of information processing including image recog-
nition, natural language processing and information retrieval (14; 15; 16; 17).

Here we briefly review the naive Bayes model. Let ~x be a vector we want to
classify, and ck be a possible class. What we want to know is the probability
that the vector ~x belongs to the class ck. We first transform the probability
P (ck|~x) using Bayes’ rule,

P (ck|~x) = P (ck) ×
P (~x|ck)

P (~x)
(8)
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Class probability P (ck) can be estimated from training data. However, direct
estimation of P (ck|~x) is impossible in most cases because of the sparseness of
training data.

By assuming the conditional independence among the elements of a vector,
P (~x|ck) is decomposed as follows,

P (~x|ck) =
d∏

j=1

P (xj|ck), (9)

where xj is the jth element of vector ~x. Then Equation 8 becomes

P (ck|~x) = P (ck) ×

∏d
j=1 P (xj|ck)

P (~x)
(10)

By this equation, we can calculate P (ck|~x) and classify ~x into the class with
the highest P (ck|~x).

There are some implementation variants of the naive Bayes classifier depending
on their event models (18). In this paper, we adopt the multi-variate Bernoulli
event model, in which all features are binary.

5.2 Features

As the input of the classifier, the features of the target must be represented in
the form of a vector. We use a binary feature vector which contains only the
values of 0 or 1 for each element.

In this paper, we use the local context surrounding a candidate term and the
words contained in the term as the features. We call the former contextual

features and the latter term features.

The features used in our experiments are given below.

• Contextual Features
W−1 : the preceding word.
W+1 : the following word.

• Term Features
Wbegin : the first word of the term.
Wend : the last word of the term.
Wmiddle : the other words of the term without positional information (bag-

of-words).
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Suppose the candidate term is “putative zinc finger protein” and the sentence
is

... encoding a putative zinc finger protein was found to derepress beta- galac-
tosidase ...

We obtain the following active features for this example.

{W−1 a}, {W+1 was}, {Wbegin putative}, {Wend protein}, {Wmiddle zinc},
{Wmiddle finger}.

5.3 Training

The training of the classifier is done on an annotated corpus. We first scan
the corpus for protein name candidates by the dictionary matching method
described in Section 3 or 4. If a recognized candidate is annotated as a pro-
tein name, this candidate and its context are used as a positive (“accepted”)
example for training. Otherwise, it is used as a negative (“rejected”) example.

6 Experiment

6.1 Corpus and Dictionary

We conducted experiments of protein name recognition using the GENIA cor-
pus version 3.02 (6). The GENIA corpus is an annotated corpus, which con-
tains 2,000 abstracts extracted from MEDLINE database. These abstracts are
selected from the search results with MeSH terms Human, Blood Cells, and
Transcription Factors.

The biological entities in the corpus are annotated according to the GENIA
ontology. Although the corpus has many categories such as protein, DNA,
RNA, cell line and tissue, we used only the protein category. When a term
was recursively annotated, only the outermost (longest) annotation was used.

The first 200 abstracts of the corpus were used as the test data. The remaining
1,800 abstracts were used as the training data. The protein name dictionary
was constructed from the training data by collecting all the terms that were
annotated as proteins.

Each recognition was counted as correct if the both boundaries of the recog-
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Table 4
Precision improvement by filtering.

Precision Recall F-measure

without filtering 45.2% 66.4% 53.8%

with filtering 71.7% 60.8% 65.8%

nized term exactly matched the boundaries of an annotation in the corpus.

6.2 Improving Precision by Filtering

We first conducted experiments to evaluate how much precision is improved by
the filtering process. In the candidate recognition phase, the longest matching
algorithm was used for candidate recognition.

The results are shown in Table 4. F-measure is defined as the harmonic mean
of precision and recall:

F =
2 × precision × recall

precision + recall
(11)

The first row shows the performances achieved without filtering. In this case,
all the candidates identified in the candidate recognition phase are regarded as
protein names. The second row shows the performance achieved with filtering
by the naive Bayes classifier. In this case, only the candidates that are classi-
fied into “accepted” are regarded as protein names. Notice that the filtering
significantly improved the precision (from 45.2% to 71.7%) with slight loss of
the recall. The F-measure was also greatly improved (from 53.8% to 65.8%).

6.2.1 Efficacy of Contextual Features

The advantage of using a machine learning technique is that we can exploit
the context of a candidate. In order to evaluate the efficacy of contexts, we
conducted experiments using different feature sets.

Table 5 shows the results. The first row shows the performances achieved by
using only contextual features. The second row shows those achieved by using
only term features. The performances achieved by using both feature sets are
shown in the third row.

The results indicate that candidate terms themselves are strong cues for classi-
fication. However, the fact that the best performance was achieved when both

16



Table 5
Performance on different feature sets.

Feature Set Precision Recall F-measure

contextual 59.6% 59.1% 59.4%

features

term 68.9% 61.0% 64.7%

features

all features 71.7% 60.8% 65.8%

Table 6
Effectiveness of approximate string search.

Threshold Precision Recall F-measure

2 71.9% 59.8% 65.3%

4 71.6% 62.0% 66.4%

6 71.2% 62.2% 66.4%

8 70.3% 62.9% 66.4%

10 69.7% 63.6% 66.5%

12 69.0% 64.3% 66.6%

14 68.5% 65.4% 66.9%

16 68.0% 65.7% 66.8%

18 67.3% 66.0% 66.6%

20 64.7% 67.0% 65.8%

22 62.9% 67.2% 65.0%

feature sets were used suggests that the context of a candidate conveys useful
information about the semantic class of the candidate.

6.3 Improving Recall by Approximate String Search

We conducted experiments to evaluate how much we can further improve the
recognition performance by using the approximate string searching method
described in Section 3. Table 6 shows the results. The leftmost columns show
the thresholds of the normalized costs for approximate string searching. As
the threshold increased, the precision degraded while the recall improved. The
best F-measure was 66.9%, which is better than that of exact matching by
1.1% (see Table 4).
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6.4 Expanding Dictionary by Variant Generation

6.4.1 Variant Generator

We used UMLS Metathesaurus version 2003AA for learning operation rules.
The terms having the semantic type of “Amino Acid, Peptide, or Protein”
were used for the learning. Table 7 shows a part of the obtained rules and
their probabilities. Asterisks in the table is a wild card, meaning that one
can ignore the context of that position. Notice that there are many rules for
replacing spaces and hyphens. This suggests that spaces and hyphens are often
used interchangeably in protein names.

The variants of some biomedical terms generated by our algorithm are shown
in Tables 8 to 11. The first two input terms “NF-kappa B” and “transcription
factor” are the two most frequent protein names in the corpus.

The generated variants of “transcription factor” shown in Table 9 are interest-
ing. The first letter of “transcription” and “factor” is capitalized in the second
and third variant respectively. This reflects the fact that the first letter of a
word is often capitalized in biomedical terms. Notice that the plural form of
“factor” is generated in the first variant.

The variants for the input term “tumor necrosis factor” are shown in Table
10. It should be noted that transformation to the British spelling variation of
“tumor” appears in the seventh variant.

The variants for the input term “T cell factor 1” are shown in Table 11.
Notice that the variant in which a hyphens is inserted between ‘T’ and “cell”
was ranked at the top. The eighth variant “T cell factor I” is also interesting,
where the numeral ‘1’ is replaced with the letter ‘I’.

6.4.2 Dictionary Expansion

We conducted experiments of dictionary expansion using the varinat genera-
tor. Expansions were done on the terms whose length was equal to or longer
than five characters. The maximum number of variants generated for each
term was limited to 100.

Table 12 shows the effectiveness of dictionary expansion. The leftmost columns
show the threshold of generation probability for expanding the dictionary. The
recall improves as the threshold decreases. The best F-measure is 67.0%, which
is roughly equal to the performance of approximate string search.
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Table 7
Operation rules and their probabilities.

Operation

Probability Left Context Target Right Context Operation

0.971 * ˆ * delete the target

0.958 * o ea delete the target

0.958 rh ea insert ‘o’

0.952 e hyphen R replace the target with space

0.950 or space 3, replace the target with hyphen

0.950 or hyphen 3, replace the target with space

0.947 TH (1 insert space

0.947 or s a delete the target

0.945 * space tR replace the target with hyphen

0.938 T space Ce replace the target with hyphen

0.938 L space I replace the target with hyphen

0.938 in space bi replace the target with hyphen

0.938 ne space tR replace the target with hyphen

0.938 3 space * replace the target with hyphen

0.938 r hyphen 3 replace the target with space

0.938 E space 1 replace the target with hyphen

0.938 V space I replace the target with hyphen

0.938 ne s R delete the target

0.938 * s 2 delete the target

0.929 start of term l o replace the target with ‘L’

0.929 NA space DE replace the target with hyphen

0.929 NA hyphen DE replace the target with space

0.929 in hyphen A replace the target with space

0.929 rg hyphen * replace the target with space

0.923 k a e delete the target

0.923 x hyphen 1 delete the target

: : : : :

Asterisks indicate a wild card.
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Table 8
Generated variants for “NF-kappa B”.

Generation Probability Generated String

1.000 NF-kappa B

0.466 NF kappa B

0.317 NF-kappa-B

0.286 NF-Kappa B

0.233 NFkappa B

0.211 NP-kappa B

0.199 NP kappa B

0.190 NF Kappa B

0.150 NF-kappaB

0.148 NF kappa-B

0.090 NF-Kappa-B

0.081 NP Kappa B

: :

Table 9
Generated variants for “transcription factor”.

Generation Probability Generated String

1.000 transcription factor

0.571 transcription factors

0.356 Transcription factor

0.219 transcription Factor

0.206 trancription factor

0.203 Transcription factors

0.137 transcription-factor

0.125 transcription Factors

0.117 trancription factors

0.107 transcription factorss

0.078 transcription-factors

0.073 Trancription factor

: :
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Table 10
Generated variants for “Tumor necrosis factor”.

Generation Probability Generated String

1.000 Tumor necrosis factor

0.571 Tumor necrosis factors

0.218 Tumor necrosi factor

0.188 Tumors necrosis factor

0.176 tumor necrosis factor

0.139 Tumor-necrosis factor

0.137 Tumor necrosis-factor

0.125 Tumour necrosis factor

0.124 Tumor necrosis Factor

0.124 Tumor necrosi factors

0.107 Tumors necrosis factors

: :

Table 11
Generated variants for “T cell factor 1”.

Generation Probability Generated String

1.000 T cell factor 1

0.604 T-cell factor 1

0.498 T cell factor-1

0.301 T-cell factor-1

0.196 T cell factors 1

0.139 T cell factor1

0.137 T cell-factor 1

0.135 t cell factor 1

0.129 T cell factor I

0.124 T cell Factor 1

0.118 T-cell factors 1

: :
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Table 12
Effectiveness of Dictionary Expansion

Threshold Precision Recall F-measure

2−1 71.8% 61.5% 66.2%

2−2 72.0% 61.9% 66.6%

2−3 72.1% 61.6% 66.4%

2−4 72.4% 61.9% 66.7%

2−5 72.5% 62.3% 67.0%

2−6 72.5% 62.1% 66.9%

7 Related Work

Kazama et al. (9) reported an F-measure of 56.5% on the GENIA corpus
version 1.1 using SVMs. Collier et al. (19) reported an F-measure of 75.9%
on 100 MEDLINE abstracts by using a Hidden Markov Model. Since the
evaluation corpora used in their experiments are different from the corpus
used in this paper, the results are not directly comparable.

Lee et al. (20) reported an F-measure of 69.2% on the GENIA corpus version
3.0 using SVMs. Shen et al. achieved an F-measure of 70.8% on the same
corpus by incorporating various features into a Hidden Markov Model. Since
the difference between the GENIA corpus version 3.0 and the GENIA cor-
pus version 3.02, which we used in this paper, is small, their results suggest
that their methods work better than our method regarding recognition perfor-
mance. However, their approaches do not provide ID information of recognized
terms.

Krauthammer et al. (21) proposed a dictionary-based gene/protein name recog-
nition method. They used BLAST for approximate string matching by map-
ping sequences of text characters into sequences of nucleotides that can be
processed by BLAST. They achieved a recall of 78.8% and a precision of
71.1% evaluated by a partial match criterion, which is less strict than our
criterion.

8 Conclusion

In this paper we propose a two-phase protein name recognition method. In
the first phase, we scan texts for protein name candidates using a protein
name dictionary. In the second phase, we filter the candidates using a ma-
chine learning technique. Our method is dictionary-based and can provide ID
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information of recognized terms unlike machine learning approaches.

Experimental results using the GENIA corpus show that the filtering using a
naive Bayes classifier greatly improves precision with slight loss of recall. We
achieved an F-measure of 67.0% for protein name recognition on the GENIA
corpus.

We presented two approaches for alleviating the low-recall problem caused
by spelling variation. The first one is to use an approximate string searching
algorithm instead of exact matching algorithms. The other one is to expand
the dictionary in advance by using the variant generator.

Although the experimental results showed that the performances of the two
approaches are roughly the same, we found the dictionary expansion approach
much more attractive. The main reason is the cost of computation: the compu-
tational cost of approximate string searching is far bigger than exact matching.
Since the amount of available biomedical documents is huge, the processing
speed is an important factor of information extraction systems.

The future direction of this research involves:

• Use of state-of-the-art classifiers
We have used a naive Bayes classifier in our experiments because it re-

quires a small computational resource and exhibits good performance. There
is a chance, however, to improve performance by using state-of-the-art ma-
chine learning techniques including maximum entropy models and support
vector machines.

• Extending the algorithm for variant generation
Three types of operations are considered in this paper for the mechanism

of variant generation. There can be, however, other types of operations, such
as word-insertion and word-replacement. Our future work should encompass
those types of operations to improve the recall for long protein names.
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