Phrase Recognition by Filtering and Ranking with Perceptrons

Xavier Carreras and Lluis Marquez
TALP Reseach Center
Technical University of Catalonia (UPC)
Campus Nord UPC, E-08034 Barcelona
{carreras, |l uism@si.upc.es

Abstract

We present a phrase recognition system based on per-
ceptrons, and an online learning algorithm to train
them together. The recognition strategy applies learn-
ing in two layers, first at word level, to filter words
and form phrase candidates, second at phrase level,
to rank phrases and select the optimal ones. We pro-
vide a global feedback rule which reflects the de-
pendencies among perceptrons and allows to train
them together online. Experimentation on Partial
Parsing problems and Named Entity Extraction gives
state-of-the-art results on the CoNLL public datasets.
We also provide empirical evidence that training the
functions together is clearly better than training them
separately, as in the conventional approach.

1 Introduction

Over the past few years, many machine learning meth-
ods have been successfully applied to tasks in which
phrases of some type have to be recognized. In Nat-
ural Language, relevant problems of this type in-
clude Named Entity Recognition and Classification
(NERC), (Tjong Kim Sang & De Meulder 03), or,
in the syntactic level, partial parsing tasks (Tjong
Kim Sang & Buchholz 00; Tjong Kim Sang & Déjean
01), or even full parsing (Ratnaparkhi 99).

The general approach consists of decomposing the
global phrase recognition problem into a number of
local learnable subproblems, and infer the global so-
lution from the outcomes of the local subproblems.
For chunking problems —as shallow parsing or named
entity extraction— the approach is typically to perform
a tagging. Here, local subproblems include learning
whether a word opens, closes, or is inside a phrase
of some type (noun phrase, verb phrase, ...), and the
inference process consists of sequentially computing
the optimal tag sequence which encodes the phrases,
by means of dynamic programming (Punyakanok &
Roth 01). When hierarchical structure has to be rec-
ognized, additional local decisions are required to de-
termine the embedding of phrases, which results in
a more complex inference process which recursively
builds the global solution (Ratnaparkhi 99; Carreras
et al. 02; Kudo & Matsumoto 02).

A usual methodology for solving the local subprob-
lems is to use a discriminative learning algorithm to
learn a classifier for each local decision. Each in-
dividual classifier is trained separately from the oth-
ers, maximizing some local measure such as the ac-
curacy of the local decision. However, when per-
forming the phrase recognition task, the classifiers
are used together and dependently, and one classi-
fier predictions’ may affect the prediction of another.
Indeed, the global performance of a system is mea-
sured in terms of precision and recall of the recog-
nized phrases, which, although related, is not directly
the local accuracy measure for which the local classi-
fiers are trained.

Recent works on the area provide alternative learn-
ing strategies in which the learning process is guided
from a global point of view. In the online setting,
(Collins 02) presents a variant of the perceptron for
tagging, in which the feedback for the perceptron is
given from the output of the Viterbi decoding algo-
rithm. Also, (Crammer & Singer 03) present a topic-
ranking algorithm, in which several perceptrons re-
ceive feedback from the ranking they produce over
a training instance. Alternatively, works on sequen-
tial learning provide probabilistic conditional models
(Lafferty et al. 01) or derivations of margin-based al-
gorithms for the sequential setting (Altun et al. 03).

In this paper we present a global learning strat-
egy for the general task of recognizing phrases. We
adopt our general phrase recognition model presented
in (Carreras et al. 02). Given a sentence, learning
is first applied at word level to identify phrase can-
didates of the solution. Then, learning is applied at
phrase level to score phrase candidates and discrim-
inate among competing ones. The inference for the
global solution consists of an exploration of all coher-
ent solutions to find the best scored one. By working
also at phrase level, the model allows to design fea-
tures over partial structures of the solution, richer than
the usual word-level features.

As a main contribution, we propose a recognition-
based feedback rule which allows to learn the de-

cisions in the system as perceptrons, all in one go.
The learning strategy works online at sentence level.
When visiting a sentence, the perceptrons are first
used to recognize the set of phrases, and then up-
dated according to the correctness of their solution.
The recognition feedback reflects to each individual
perceptron its committed errors from a global point
of view. As a result, the resulting learned functions
behave as filters and rankers, rather than default clas-
sifiers, which we argue to be better for these tasks.

In the experimentation on three relevant problems,
namely Chunking, Clause Identification and Named
Entity Extraction, our learning architecture exhibits
state-of-the-art performance, while being conceptu-
ally simple and flexible.

2 The Phrase Recognition Model

In this section we first formalize the problem and then
present the phrase recognition system.

2.1 Formalization

Let z be a sentence belonging to the sentence space X,
formed by n words z;, with 4 ranging from 0 to n — 1.
Let K be a predefined set of phrase categories. In
syntactic parsing, X may include noun phrases, verb
phrases, and clauses, among others. A phrase, de-
noted as (s, e)g, is the sequence of consecutive words
spanning from word z; to word z., having s < e, with
category k € K.

Let phy = (sl,el)kl and phy = (82,62)k2 be two
different phrases. We define that ph; and phs over-
|apiff51 <s9<e1 <egOrsy<s; <eqg<ep,and
we note it as phi ~ pho. Furthermore, we define that
ph1 is embedded in ph2 iff s9 < 51 < e < eog, and
we note it as phi < pho.

Let P be the set of all possible phrases, formally
expressed as P = {(s,e)x |0 < s < ek € K}. A
solution for a phrase recognition problem is a set y of
phrases which is coherent with respect to some con-
straints. We consider two types of constraints: over-
lapping and embedding.

For the problem of recognizing sequentially
organized phrases, which we refer to as chunking,
we do not allow phrases to overlap or embed.
Thus, the solution space can be formally expressed as

Y ={yCP|Vphi,phe €y phi#pha A phi£pha} .

More generally, for the problem of recogniz-
ing phrases organized hierarchically, a solution is
a set of phrases which do not overlap but may
be embedded. Formally, the solution space is

Y ={y C P |Vphi,pha €y phitphs} .

In order to evaluate a phrase recognition system we
use the standard measures for recognition tasks: pre-
cision, recall and their harmonic mean Fg_;.

2.2 Recognizing Phrases

The Phrase Recognizer is a function which, given
a sentence z, identifies the set of phrases y of z:
PhRec: X —).

We assume two components within this function,
both will be learning components of the recognizer.
First, we assume a function PhCI which, given a sen-
tence z, identifies a set of candidate phrases, not nec-
essarily coherent, for the sentence, PhCI(z) C P.

Second, we assume a number of scoring functions,
which, given a phrase, produce a real-valued score in-
dicating the plausibility of the phrase. In particular,
for each category k£ € K we assume a function scorey,
which, given a phrase, produces a positive score if the
phrase is likely to belong to category &, and a negative
score otherwise.

The phrase recognizer is a function which searches
a coherent phrase set for a sentence x according to the
following optimality criterion:

PhRec(z) = arg max
yCPhCI(z) | yey

Z scoreg (s, e)
(s,e)kEy
@)

That is, among all coherent subsets of candidate
phrases, the optimal solution is defined as the one
whose phrases maximize the summation of phrase
scores.

The function PhCT is only used to reduce the search
space of the PhRec function. Note that the PhRec
function constructs the optimal phrase set by evalu-
ating scores of phrase candidates, and, regarding the
length of the sentence, there is a quadratic number of
possible phrases, that is, the set 2. Thus, consider-
ing straightforwardly all phrases in P would result in
a very expensive exploration. The function PhCT is
intended to filter out phrase candidates from P by ap-
plying decisions at word level. A simple setting for
this function is a start-end classification: each word
of the sentence is tested as start —if it is likely to start
phrases— and as end —if it is likely to end phrases.
Each start word s with each end word e, having s < e,
forms the phrase candidates (s, e)x, k € K. Alterna-
tives to this setting may be to consider a pair of start-
end classifiers for each category in C, or to perform
a Begin-Inside classification, either projected to cate-
gories or not. In general, each classifier will be ap-
plied to each word in the sentence, and deciding the
best strategy for identifying phrase candidates will de-

pend on the sparseness of phrases in a sentence, the
length of phrases and the number of categories.

Once the phrase candidates are identified, the opti-
mal coherent phrase set is selected according to (1).
Due to the nature of it, there is no need to explicitly
enumerate each possible coherent phrase set, which
would result in an exponential exploration. Instead,
by guiding the exploration through the problem con-
straints and using dynamic programming the optimal
coherent phrase set can be found in polynomial time
over the sentence length. For chunking problems, the
solution can be found in quadratic time by perform-
ing a Viterbi-style exploration from left to right (Pun-
yakanok & Roth 01). When embedding of phrases
is allowed, a cubic-time bottom-up exploration is re-
quired (Carreras et al. 02). As noted above, in either
cases there will be the additional cost of applying a
quadratic number of decisions for scoring phrases.

Summarizing, the phrase recognition system is per-
formed in two layers: the identification layer, which
filters out phrase candidates in linear time, and the
scoring layer, which selects the optimal coherent
phrase set in quadratic or cubic time.

3 Learning via Recognition Feedback

In this section we describe an online learning strat-
egy for training the learning components of the Phrase
Recognizer, namely the classifiers in PhCI and the
functions scorey, k € K. Each function is implemen-
ted using a perceptron® and a representation function.

A perceptron is a function hy, : R* — R
parametrized by a vector w in R™, which given an in-
stance x € R™ outputs as prediction the inner prod-
uct between the x and w vectors, hy(x) = w - X.
To remind the reader, the traditional training algo-
rithm for binary classification works as follows. It
starts with the vector w initialized to zeros, w = 0.
Given a new example (X, y), it predicts the label of x
as = sign(w - X). The learning strategy is mistake-
driven: if the predicted output ¢ differs from y, then
the prediction vector is updated by orienting it toward
X, W = W + yX; if the prediction is correct, w is left
unchanged.

The representation function ® : X — R" takes an
instance z belonging to some space X and outputs a
vector in R™ with which the perceptron operates. We
will discuss a setting for this function in section 5.

Let us fix the PhCT function to a start-end clas-
sification. The function consists of two classifiers, hg

1 Actually, we use a variant of the model called the voted per-
ceptron, explained below in section 3.3.

and hg, each of which predicts whether a word z starts
or ends a phrase, respectively. The function PhCT is
formed by two perceptron vectors, wg and wg, and a
shared representation function ®,. A classifier pre-
diction is computed as hg(z) = wg - ®,,(z), and sim-
ilarly for hg, and the sign is taken as the binary clas-
sification.

The functions scorey, for k& € K, compute a score
for a phrase (s, e) being a phrase of category k. For
each function there is a vector wy, and there is a
shared function ®,,. The score is given by the expres-
sion scoreg (s, e) = Wy - ®p(s,e).

3.1 Learning Algorithm

The learning problem consists in setting the parameter
vectors w of each perceptron. We propose a mistake-
driven online learning algorithm for training the pa-
rameter vectors all together.

The algorithm starts with all vectors initialized to
0, and then runs repeatedly in a number of epochs T'
through all the sentences in the training set. Given
a sentence, it predicts its optimal phrase solution as
specified in (1) using the current vectors. If the pre-
dicted phrase set is not perfect the vectors responsible
of the incorrect prediction are updated additively. The
sentence-based learning algorithm is as follows:

e Input: {(z',y'),...,(z™,y™)}, z' are sen-
tences, 4 are solutions in)

e Define: W = {wg,wg} U {wi|k € K}.
e Initialize: Ywe Ww = 0;

e fort=1...T ,fori=1...m:

1. § = PhRecy (z)
2. learning_feedback(W, z*, 3, 9)

e Output: the vectors in W.

The learning feedback is specified in Figure 1. We
stem from the traditional Perceptron update rule for
binary classification described above. By analyzing
the dependencies between each perceptron and a solu-
tion, we derive a feedback rule which naturally fits the
phrase recognition setting. The feedback models the
interaction between the two layers of the recognition
process. The start-end layer filters out phrase candi-
dates for the scoring layer. Thus, misclassifying the
boundary words of a correct phrase blocks the gener-
ation of the candidate and produces a missed phrase.
Therefore, we move the start or end prediction vectors
toward the misclassified boundary words of a missed

e Phrases correctly identified: V(s,e)r € y*N3:

— Do nothing, since they are correct.
e Missed phrases: V(s,e)r € y*\¥:

1. Update misclassified boundary words:
if (Ws - @y (zs) < 0) then ws = ws + &, (x5)
if (Wg - @w(ze) < 0)then wg = Wi + Pw(ze)
2. Update score function, if applied:
if (W ®w(zs) >0AWE - Py(ze) > 0) then
Wi = Wi + <I>p(s,e)

e Over-predicted phrases: V(s,e)r € §\y*:
1. Update score function:
Wi, = Wi, — @p(s,e)
2. Update words misclassified as S or E:

if (goldS(s) = 0) then ws = ws — @ (z5)
if (goldE(e) = 0) then wg = wg — P (z.)

Figure 1: The Recognition Feedback. y* is the gold
set of phrases for a sentence z, and ¢ is the set pre-
dicted by the PhRec function. goldS(i) and goldE(7)
are respectively the perfect indicator functions for
start and end classifications, i.e. they return 1 if word
x; starts/ends some phrase in y* and 0 otherwise.

phrase. When an incorrect phrase is predicted, we
move away the prediction vectors from the start or
end words, provided that they are not boundary words
of a phrase in the gold solution. Note that we delib-
erately do not care about false positives start or end
words which do not finally over-produce a phrase.

Regarding the scoring layer, each category pre-
diction vector is moved toward missed phrases and
moved away from over-predicted phrases.

Intrinsically, this simple feedback rule approxi-
mates the desired behavior of the global PhRec func-
tion, that is, to make the summation of the scores of
the correct phrase set maximal with respect to other
phrase set candidates.

3.2 The Classification Setting Alternative

The usual alternative to the described learning algo-
rithm is to train each function of the system sepa-
rately. To do so, each function is modeled as a classi-
fier. The start-end classifiers, working at word level,
decide whether a particular word starts and/or ends or
not some phrase in the correct solution. The score
functions, working at phrase level, decide whether a
particular phrase candidate is in the solution or not.
A main shortcoming of the classification modeling
is that the individual classification loss functions do
not directly reflect the global goal of the phrase recog-
nition problem, measured in terms of precision and
recall. This fact constitutes a major motivation for

learning all the functions together.

Second, it is not clear how to generate training
examples for training the score functions. Note
that these functions operate at phrase level, which is
quadratic over the length of a sentence. Thus, consid-
ering a training instance for each possible phrase in
a collection of thousands of sentences generates mil-
lions of examples, most of which are negatives, and
makes usual learning techniques no feasible at all. A
practical issue is to generate phrase examples only for
the correct start and end words, but then there are no
guarantees on scoring phrase candidates generated by
false positive boundary words. By training all func-
tions together, in an online fashion, we are able to con-
trol the interaction of both layers in a natural way. On
section 6.3 we give empirical evidence that the learn-
ing approach we propose works better than the classi-
fication setting.

3.3 Voted Perceptron and Kernelization

Although the analysis above concerns the perceptron
algorithm, we use a modified version, the voted per-
ceptron algorithm, presented and detailed in (Freund
& Schapire 99). The key point of the voted version
is that, while training, it stores information in order to
make more robust predictions on test data. In particu-
lar, each perceptron vector generated after every mis-
take during training is stored, together with a weight
for the vector. In our architecture, this weight corre-
sponds to the number of positive decisions correctly
predicted by the vector. Then, when testing, the pre-
diction is an averaged vote over the predictions of
each vector.

As a secondary issue, in the same work the dual for-
mulation of the perceptron is presented, which allows
the use of kernel functions. These functions allow
to efficiently work in richer feature spaces in which
the learning problem may be easier to solve. In this
paper we work with polynomial kernels K (x,x") =
(x-x'+1)%, where d is the degree of the kernel. In bi-
nary spaces, this kernel has the effect of working with
all the conjunctions of the initial features of up to size
d (Cristianini & Shawe-Taylor 00).

4 Phrase Recognition in Natural Language

In this section we briefly describe problems in the
Natural Language domain in which phrases of some
type have to be recognized.

Chunking In this problem, also known as Shallow
Parsing, the base syntactic phrases, or chunks, of a

sentence have to be recognized. The chunks in a sen-
tence can not overlap and are non-recursive, that is,
they can not be embedded. We followed the setting
of the CoNLL-2000 shared task (Tjong Kim Sang &
Buchholz 00), which provides data for English?. The
problem consists of recognizing the chunks of a sen-
tence on the basis of words and part-of-speech tags
(PoS). There are 11 types of chunks (noun phrases,
verb phrases, prepositional phrases, ...). The data
consists of sections of the Penn WSJ treebank, namely
a training set (sections 15-18, 8,936 sentences), and a
test set (section 20, 2,012 sentences) to perform eval-
uation and compare with other systems. In order to
perform tuning of our system, we generated develop-
ment data by dividing the training data into a training
set (sections 15-17) and a validation set (section 18).

Clause ldentification The goal of is the problem is
to recognize the clauses of a sentence. A clause can
be roughly defined as a phrase with a subject, possibly
implicit, and a predicate. Clauses in a sentence form
a hierarchical structure which constitutes the skeleton
of the full syntactic tree. Thus, embedding of clauses
is allowed. We followed the setting of the CoNLL-
2001 shared task® (Tjong Kim Sang & Déjean 01) on
Clause ldentification for English. The problem con-
sists of recognizing the set of clauses on the basis of
words, part-of-speech tags, and chunks. There is only
one category of phrases to be considered, namely the
clauses. As in chunking, the data consists of sections
of the Penn WSJ treebank, namely a training set (sec-
tions 15-18, 8,936 sentences), a development set (sec-
tion 20, 2,012 sentences) for tuning the system, and a
test set (section 21, 1,671 sentences) to evaluate and
compare with other systems.

Named Entity Recognition and Classification
(NERC) The goal of this problem is to recognize
Named-Entity (NE) phrases in a sentence and cat-
egorize them according to some predefined set of
categories. In this problem, embedding of phrases is
not allowed. We followed the setting of the CoNLL-
2003 shared task?, which concerned the problem for
the English language, considering four NE types, K=
{LOCATION, ORGANIZATION, PERSON, OTHERS}.
The data provided is a part of the Reuters corpus,
including a training set (14,987 sentences), a devel-
opment set (3,466), and a test set (3,684 sentences) to
perform evaluation.

2http://cnts. ui a. ac. be/ conl | 2000/ chunki ng
Shttp://cnts. ui a.ac. be/ conl | 2001/ cl auses
*http://cnts. ui a. ac. be/ conl | 2003/ ner

5 Feature-Vector Representation

In this section we describe the representation func-
tions @, and @, which respectively map a word or a
phrase and their local context into a feature vector in
R™, which in practice is a binary space. First we de-
fine a set of primitive functions which apply to words
or sequences of words:

Word(w): The form of word w.

PoS(w): The part-of-speech tag of word w.

ChunkTag(w): The chunk tag of word w.

OrthoFlags(w): Binary flags of word w with

regard to how is it capitalized (initial-caps,

all-caps), the kind of characters that form
the word (contains-digits, all-digits, alphanu-
meric, roman-number), the presence of punc-
tuation marks (contains-dots, contains-hyphen,
acronym), single character patterns (lonely-
initial, punctuation-mark, single-char), or the
membership of the word to a predefined class

(functional-word®), or pattern (URL).

e OrthoTag(ws ...we): A tag with regard to or-
thographic features, which is either capitalized
(©), lowercased (I), functional (f), punctuation
mark (.), quote (*) or other (x).

o Affixes(w): The prefixes and suffixes of the word
w (up to 4 characters).

e P-Gram(ws ...we): The conjunction of the

outputs of the primitive P on words ws . . . we.

We work with Word-Grams, PoS-Grams and

OrthoTag-Grams . For instance, the OrthoTag-

Gram for “John Smith payed 3 euros” is CCl x| .

Representing Words For the function @ (z;), we
compute primitives in a window of words around z;,
that is, words z;; with [€ [—L,,, +L,]. Each prim-
itive label, together with each relative position / and
each returned value forms a final binary indicator fea-
ture. Specifically, we compute:

e Word and PoS primitives.

e P0oS-Grams on all sequences within the window
which include the central word.

e For Clause Id., also ChunkTag primitives (given
in the input).

e For NERC, also OrthoFlags, Affixes, and
OrthoTag-Grams on all sequences which include
the central word.

e Left Start-Ends: flags indicating whether the
words in [— Ly, —1] have been predicted as start
and/or end words of a k-phrase, k € K.

SFunctional words are determiners, prepositions and conjunc-
tions.

Representing Phrases For the function ®(s,e),
we capture the context of the phrase and the phrase
itself. For the context, we evaluate:

e A [—L,,0] window of primitives at the s word
and a separate [0,+L;,] window at the e word.
These windows include Words and PoS; on
Clause Id., also ChunkTags; on NERC, also Or-
thoFlags and OrthoTag-Grams features.

e Left Phrases (only for Chunking and NERC):
Representation of the elements to the left of the
s word. An element is either an already recog-
nized phrase (we reduce its words into a single
element and represent it by the phrase type) or a
word outside a phrase (represented by its PoS).
We consider up to 3 elements, and codify the rel-
ative position of each one, and also all conjunc-
tions.

As for the (s, e) phrase itself, we evaluate primi-
tives from s to e without capturing the relative posi-
tion. Specifically we capture:

The length of the phrase (real-valued feature).
Word and PoS primitives.

PoS-Grams on all subsequences of w;..w, of up
to size 3, and also the complete PoS-Gram on the
whole sequence.

Internal Pattern (only for Clause Id.): Concate-
nation of the relevant elements in the sentence
fragment ws..w. . The following elements are
considered: a) Punctuation marks and coordinate
conjunctions; b) The word “t hat ”; ¢) Relative
pronouns; d) Verb phrase chunks; and e) The top
clauses within the s to e fragment, already recog-
nized through the bottom up search (a clause in a
pattern reduces all the elements within it into an
atomic element).

e For NERC, also: a) the Word-Gram of the whole
phrase; b) OrthoTag-Grams on subsequences of
sizes 2, 3 and 4; c) the affixes of each word.

Experimenting on the respective development sets,
for Chunking we set both L,, and Ly, to 2, whereas for
the two other problems we set them to 3.

6 Experimentation

We experimented with our phrase recognition system
on the three problems presented above. As stated,
each system is composed of Start-End functions and
Scoring functions.

6.1 Learning Details

For Chunking and Clause Identification we set a pair
of start-end functions for each type of phrase, whereas
for NERC we set only two start-end functions which
were shared among all NE types.

Regarding the feature space, we filtered out features
occurring less than 3 times in training. As for the
polynomial kernel, we fixed the degree of all func-
tions to 2, since initial experiments on the develop-
ment sets showed poor performance for the linear case
(specially on Clause Id.) and no significant improve-
ments for higher degrees. Also, concerning features
which represent the solution being recognized (Left
Start-Ends, Left Phrases, Internal Pattern), we found
better to encode the outputs of the functions being
learned, rather than the correct values of the solution.

In Clause ldentification, to avoid some computa-
tion in the start-end layer, we did not consider clause
boundary words which would break the chunking pro-
vided in the input, that is, we do not consider clauses
which would overlap with chunks.

On each problem, we ran the learning algorithm
which trains all the functions together for 15 epochs
on the training data, and evaluated the performance
on the development sets to select the optimal point in
terms of F}. As a general behavior, on each problem
the global performance substantially increased during
the first 5 epochs, and then became somewhat stable,
with minor improvements (below, Figure 2 plots the
learning curve on Clause Identification).

6.2 Results and Comparison to Related Works

Table 1 shows the obtained performance on each prob-
lem. The results are fairly good in all cases.

On Chunking, we obtained a very good perfor-
mance of 93.74 which would situate us in first posi-
tion at competition time (Tjong Kim Sang & Buch-
holz 00). The two best published works on this data
perform the task as a tagging, solved with multiclass
learning techniques. (Kudo & Matsumoto 01) per-
formed several taggings with SVM classifiers, which
were later combined. They report a performance of
93.85 with an individual tagging and 93.91 by com-
bining many taggings. Their system makes use of
several hundreds of SVM classifiers applied to each
word, whereas we only need 22 perceptrons for filter-
ing words and 11 perceptrons for scoring phrases. In
contrast, their feature space is simpler than ours, since
we exploit rich features on phrases. The best work on
the data is (Zhang et al. 02), which apply regularized
Winnow. They report a base performance of 93.57,

development

test

T | precision recall

Fpg—y | precision recall Fz_;

Chunking | 10 - -
Clause Id. | 11 | 89.80% 84.05%
NERC 12 | 89.59% 88.17%

- 94.19% 93.29% 93.74
86.83 | 87.99% 81.01% 84.36
88.87 | 83.93% 83.43% 83.68

Table 1: Results of the three problems on the development and test sets. The T column shows the optimal

number of epochs, tuned on the development sets.

and an improved performance of 94.17 by making use
of external grammatical information.

Table 2 shows the performance of our chunker on
each individual phrase type. Looking at the recog-
nition of Noun Phrases (NP), our system, achiev-
ing 94.41, slightly outperforms recent systems trained
specifically for this chunk. (Kudo & Matsumoto 01)
obtained 94.29 with combination of SVMs. (Sha &
Pereira 03) obtained 94.38 with Conditional Random
Fields. They also report 94.09 for the voted percep-
tron tagging architecture presented in (Collins 02).

On Clause Identification, our system obtains a
similar performance than the best system pub-
lished so-far (Carreras et al. 02), which obtained
(p=92.53%; r=82.48%; f1=87.22) on the develop-
ment and (p=90.18%; r=78.11%; f1=83.71) on the
test. Our performance is lower on the development,
but much better on the test. That system made use
of the same phrase recognition model, and the deci-
sions were learned by AdaBoost classifiers. Also, the
scoring function was a robust combination of several
classifiers. We provide some more discussion on this
comparison in the following experiment.

On NERC, we obtained a performance of 83.68
on the test set, which is competitive but far from the
top systems of the competition (Tjong Kim Sang &

precision recall Fp—y

ADJP | 83.38% 67.58% 74.65
ADVP | 83.54% 77.94% 80.65
CONJP | 60.00% 33.33% 42.86
INTJ 100.00% 100.00% 100.00

LST 0.00% 0.00% 0.00
NP 94.47% 94.36% 94.41
PP 96.55% 97.86% 97.20

PRT 80.72% 63.21% 70.90
SBAR 91.18% 79.25% 84.80
VP 94.22% 93.52% 93.87
all 94.19% 93.29% 93.74

Table 2: Recognition results on Chunking per types.

De Meulder 03), which achieved above 88 in F1. It
seems that the feature engineering and use of exter-
nal resources allows to substantially improve the re-
sults on this problem. Our system at competition time
(Carreras et al. 03) was based on a similar learning
architecture, the difference being that at word level
we performed Begin-Inside decisions instead of Sart-
End decisions. There we achieved a slightly better
performance of (p=85.81%; r=82.84%; f1=84.30).

6.3 On Feedback: Recognition vs Classification

In this experiment we were interested in comparing
the learning strategy via recognition feedback against
training the functions separately as classifiers, as dis-
cussed in section 3.2. We did the comparison on
Clause ldentification. In both cases, as note above, the
model was composed by start-end functions, which
identify clause candidates, and a score function.

In order to learn the functions separately as clas-
sifiers, we generated three data sets from the train-
ing data, one for each function. For the start-end
sets, we considered all words in the data, except those
breaking chunks. For the scoring layer, we generated
all phrase candidates formed with all pairs of correct
phrase boundaries. We then ran the voted perceptron
algorithm on each set for up to 15 epochs. We also
trained SVM classifiers adjusting the soft margin C
parameter on the development set.

Figure 2 shows the performance curve on the de-
velopment set in terms of the F; measure with respect
to the number of epochs during training. Clearly, the
behaviour of the Rec-VP is much better than the oth-
ers: the recognition model gets stable around 86.5,
whereas the classification models achieve around 79
for VP, and 81 for SVM. Given this evidence, the
learning architecture we present seems to be better
than the usual strategies based on separate classifiers.

As noted above, in our previous work (Carreras et
al. 02) we achieved comparable performance (though
our new results are better on the test) with the same

bWe used the SVMY9"* package available at
http://svmight.joachims.org.

88
86 I
84 I

global F Measure

70 1 1 1 1
0 2 4 6 8 10 12 14

Number of Epochs

Figure 2: Evolution of the performance on Clause
Identification with respect to the visited training sen-
tences. Rec-VP is the voted perceptron model trained
via recognition feedback. CI-VP and CI-SVM are
respectively the voted perceptron and SVM models
trained batch via classification feedback.

recognition model, but the functions implemented as
AdaBoost classifiers. The learning strategy there was
training first classifiers for the start-end layer, and
then generate training examples for the score func-
tion, taking into account the start-end behaviour. This
required a tuning procedure to select the amount of
incorrect boundaries introduced to produce negative
clause examples. Also, the score function was a ro-
bust combination of several classifiers. In any case,
our new learning strategy is much simpler, flexible
and produces state-of-the-art results.

7 Conclusions

We have presented a novel learning architecture for
general phrase structure recognition. The method
makes use of several decision functions operating in
two layers: at word level, to identify phrase candi-
dates, and at phrase level, to score the optimal ones.
Doing so, we are able to incorporate rich features
which represent partial structures of the solution.

The main contribution of the work is to propose a
very simple online learning algorithm for training, at
the same time, all the involved functions in the form
of voted perceptrons.

We have empirically proved the generality and fea-
sibility of the approach by applying it to different
phrase recognition problems on Named Entity recog-
nition and partial parsing, in which we improve the
state-of-the-art. The experimentation evidences that
exploiting the interaction between learned functions
during learning results in a better global behaviour.

Acknowledgments

Research partially funded by the European Commis-
sion (Meaning, IST-2001-34460) and the Spanish Re-
search Dept. (Hermes, TIC2000-0335-C03-02; Pe-
tra - TIC2000-1735-C02-02). Xavier Carreras holds
a predoctoral grant by the Catalan Research Dept.

References

(Altun et al. 03) Y. Altun, T. Hofmann, and M. Johnson.
Loss Functions and Optimization Methods for Discriminative
Learning of Label Sequences . In Proc. of the EMNLP, 2003.

(Carreras et al. 02) X. Carreras, L. Marquez, V. Punyakanok, and
D. Roth. Learning and Inference for Clause Identification. In
Proc. of the 14th ECML, 2002.

(Carreras et al. 03) X. Carreras, L. Marquez, and L. Padro. Learn-
ing a Perceptron-Based Named Entity Chunker via Online
Recognition Feedback. In Proc. of CoNLL-2003, 2003.

(Collins 02) M. Collins. Discriminative training methods for hid-
den markov models: Theory and experiments perceptron algo-
rithms. In Proc. of the EMNLP’ 02, 2002.

(Crammer & Singer 03) K. Crammer and Y. Singer. A family
of additive online algorithms for category ranking. Journal of
Machine Learning Research, 2003.

(Cristianini & Shawe-Taylor 00) N. Cristianini and J. Shawe-
Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, Cambridge, UK, 2000.

(Freund & Schapire 99) Y. Freund and R. E. Schapire. Large
margin classification using the perceptron algorithm. Machine
Learning, 1999.

(Kudo & Matsumoto 01) T. Kudo and Y. Matsumoto. Chunk-
ing with Support Vector Machines . In Proc. of NAACL 2001,
2001.

(Kudo & Matsumoto 02) T. Kudo and Y. Matsumoto. Japanese
Dependency Analyisis using Cascaded Chunking . In Proc. of
CoNLL-2002, 2002.

(Lafferty et al. 01) J. Lafferty, A. McCallum, and F. Pereira. Con-
ditonal random fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of ICML'01, 2001.

(Punyakanok & Roth 01) V. Punyakanok and D. Roth. The use of
classifiers in sequential inference. In Proc. of NIPS 2001.

(Ratnaparkhi 99) A. Ratnaparkhi. Learning to Parse Natural Lan-
guage with Maximum-Entropy Models. Machine Learning,
1999.

(Sha & Pereira 03) F. Sha and F. Pereira. Shallow parsing with
conditional random fields. In Proc. of HLT-NAACL, 2003.

(Tjong Kim Sang & Buchholz 00) E. F. Tjong Kim Sang and
S. Buchholz. Introduction to the CoNLL-2000 shared task:
Chunking. In Proc. of CoNLL-2000 and LLL-2000, 2000.

(Tjong Kim Sang & De Meulder 03) Erik F. Tjong Kim Sang and
Fien De Meulder. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In Proceed-
ings of CoNLL-2003. Edmonton, Canada, 2003.

(Tjong Kim Sang & Déjean 01) Erik F. Tjong Kim Sang and
Hervé Déjean. Introduction to the CoNLL-2001 shared task:
Clause identification. In Proceedings of CoNLL-2001, 2001.

(Zhang et al. 02) T. Zhang, F. Damereau, and D. Johnson. Text
chunking based on a generalization of winnow. Journal of Ma-
chine Learning Research, 2002.

