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Abstract

This paper presents an extension semi-

CRFs for Named Entity Recognition

(NER) which can incorporate long-

distance information. We introduce a

simple modification of the label set to

transfer information about distant entities.

Although, in theory, one can train and

inference the model within the frame-

work of 1st order semi-CRF models,

the straight-forward implementation of

the model suffers from a prohibitive

computational cos. In this paper, we

propose a general framework which

enables us to use the state information

more efficiently, and conduct a filtering

which significantly reduces the candidate

states. This framework allows us to use

a rich set of features that can capture

various characteristics of biomedical

NER. Experimental results that our model

achieves an F-score of 71.48% on the

JNLPBA 2004 shared task without using



external resources and post-processing

techniques. We also examine the effect of

filtering and long-distance information in

experience.

1 Introduction

The rapid increase of information in the biomedical

domain has emphasized the need for automated in-

formation extraction techniques. In this paper we

focus on the Named Entity Recognition (NER) task,

which is the first step to tackle more complex tasks

such as relation extraction and knowledge mining.

Biomedical NER is harder than general NER

tasks. For example, the best F-score in the shared

task of biomedical NER in COLING 2004 JNLPBA

(Kim et al., 2004) was 72.55% (Zhou and Su, 2004),

while the best performance at MUC-6, where sys-

tems tried to identify general named entities such as

person or organization names, was an accuracy of

95% (Sundheim, 1995). The difficulty in biomedical

NER lies in the following characteristics of biomed-

ical named entities. Firstly, named entities tend to

have many notational variants. For example, “NF-

kappa B”, “ NF kappa B” and “nuclear factor kappa

B” refer to the same entity. We therefore cannot take

a dictionary-based approach directly. Secondly, the

same term can convery different meanings depend-

ing on the context. We should also note that inter-

annotator agreement is considerably lower than in

general NER tasks. Krauthammer (2004) reported

that the inter-annotator agreement rate of human ex-

perts was 77.6% when the semantic classes were

gene, protein and mRNA, which may sugget the



upper-bound of F-score in a biomedical NER task

is around 80%.

In biomedical NER tasks, many of the previous

work are based on machine learning techniques.

Hidden Markov Model (HMM) were once popular

in NER task (Bikel et al., 1997). Recently, Kou et

al., (2005) has proposed dict-HMMs, in which dic-

tionary information is encoded as state transition.

Maximum Entropy Markov Models (MEMMs) are

commonly used for NER and can integrate over-

lapping features such as word orthographic infor-

mation and contextual words around the target en-

tities. Among these methods, conditional random

fields (CRFs) (Lafferty et al., 2001) have achieved

good results in many sequence labeling tasks (Kim

et al., 2005; Finkel et al., 2004), presumably because

they are free from the label bias problem and can use

bi-directional sequential information, which are not

directly captured by MEMMs.

Sarawagi and Cohen (2004) have recently in-

troduced semi-Markov conditional random fields

(semi-CRFs). They are defined on semi-Markov

chains and attach labels to subsequences of a sen-

tence, rather than to the tokens. The semi-Markov

formulation allows one to easily construct entity-

level features. Since the features can capture the

whole characteristics of a subsequence, we can use,

for example, the length of an entity or dictionary fea-

tures which measure the similarity between a candi-

date segment and the closest element in the dictio-

nary.

In this paper, we present an extended version of



semi-CRFs, in which each entity’s probability is

conditioned on the preceding states. The preced-

ing states do not have to be adjacent to the entity.

We achieve this by modifying the labels for “O”

(“O” means outside of the named entity) so that they

transfer the information about the preceding states.

We also show that we can conduct efficient train-

ing and inference by using “feature forest” (Miyao

and Tsujii, 2002), with which we pack the states

that share the previous information. However, the

straight-forward implementation of this framework

still suffers from a prohibitive computational cost,

because the number of label is increased by the mod-

ification, and not a few named entities are long such

as eight or ten words, which makes it difficult to

enumerate all entity candidates in training and in-

ferencing. We therefore introduce a filtering method

that significantly reduces the number of candidate

entities by using a “light-weight” classifier. This

enables us to construct semi-CRF models for the

tasks where entity names are not necessarily short

and many class-labels exist at the same time.

2 CRFs and Semi-CRFs

CRFs are undirected graphical models that encode a

conditional probability distribution using a given set

of features. CRFs allow both discriminative training

and bi-directional flow of probabilistic information

along the sequence. In NER, we usually use linear-

chain CRFs, which define the conditional probabil-

ity of a state sequencey = y1, ..., yn given the ob-



served sequencex = x1,...,xn as:

p(y|x, λ) =
1

Z(x)
exp(Σn

i=1Σjλjfj(yi−1, yi, x, i)),

(1)

where fj(yi−1, yi, x, i) is a feature function and

Z(x) is the normalization factor over all state se-

quences for the observed sequences. The model pa-

rameters are a set of real-valued weightsλ = {λk},

each of which represents the weight of a feature. All

feature functions are real-valued and can use adja-

cent label information.

Semi-CRFs are actually a restricted version of

order-L CRFs in which all the labels in a chunk are

the same. We follow the definitions in (Sarawagi and

Cohen, 2004). Lets = 〈s1, ..., sp〉 denote a segmen-

tation of x, where a segmentsj = 〈tj , uj , yj〉 consists

of a start positiontj , an end positionuj , and a label

yj . We assume that segments have a positive length

which is shorter than or equal to a pre-defined upper

boundL (tj ≤ uj , uj − tj + 1 ≤ L) and completely

cover the sequencex without overlapping, that is,s

satisfiest1 = 1, up = |x|, andtj+1 = uj + 1 for

j = 1, ..., p − 1. Semi-CRFs define a conditional

probability of a state sequencey given a observed

sequencex as:

p(y|x, λ) =
1

Z(x)
exp(ΣjΣiλifi(sj)), (2)

wherefi(sj) := fi(yj−1, yj ,x, tj , uj) is a feature

function andZ(x) is the normalization factor as one

in CRFs. The inference problem for semi-CRFs

can be solved by using a semi-Markov analog of

the usual Viterbi algorithm. The computational cost

for semi-CRFs in training and inference isL times

larger than CRFs.



3 Using non-Local Information in Semi

CRFs

In CRFs and semi-CRFs, we can only use the in-

formation on the previous label when defining the

features on a certain state or entity. In NER tasks,

however, information about a distant entity is often

more useful than the information about the preced-

ing state. For example, consider the sentence “...

including Sp1 and CP1.” where the correct labels of

“Sp1” and “CP1” are both “protein”. If the model

can use such information, it can classify “CP1” as

“protein” using the information about “Sp1” being

“protein”, which is not adjacent to “CP1.” On the

other hand, since, in many cases, the previous label

of a named entity is “O”, which indicates the outside

of named entities, information about adjacent labels

do not provide useful information1.

In order to incorporate such non-local information

in to semi-CRFs, we propose a simple approach. We

convert the label of “O” to “ O-protein”, “ O-DNA”

etc, depending on the preceding named entity. Fig-

ure 1 shows an example of this conversion. , in

which the three labels for the 2nd, 3rd and 4th states

are converted from “O” to “ O-protein”. When we

define the features for the 5th state, we can use the

information about the preceding entity “protein” by

looking at the 4th states. Since this modification

changes only the label set, we can do this within the

same framework of Semi-CRF models. This modi-

fication adds extra information for each state which

are not necessarily used in defining each states at

198.0%, labels of the previous labes of the named entity is

“O” in the training data of the shared task in the JNLPBA 2005



defining the features of them, and can be used to

transfer any information about the preceding enti-

tles. We should note that not only the number of the

kind of information, but also the way of discarding

of information determines the computational cost.

This will be discussed in 4.1.

In previous work, such long-distance information

is usually employed at a post-processing stage. This

is because the use of long-distance dependency vio-

lates the locality of the model and prevents us from

using dynamic programming techniques in training

and inference. Skip-CRFs are a direct implementa-

tion of long-distance to the model. However, they

need to determine the structure for propagating long

distance information in advance (Sutton and Mc-

Callum, 2004). In a recent study by Finkel et al.,

protein O O O DNA
protein O-protein O-protein O-protein DNA

Figure 1: Modification of “O” (other labels) to trans-

fer the previous label information.

(2005), long-distance information is encoded as an

independence model, and the inference is performed

by Gibbs sampling, which enable us to use the state-

of-the-art factored model and train efficiently, but

the inference needs much computational cost.

4 Reduction of Training/Inference Cost

The enrichment of labels and the use of the previous

and current label increase the computational cost. If

we use a label set consisting of “O” and five non-

“O” labels, we have ten labels after the conversion.

Moreover, we use the previous and current state in



defining features, the possibility of the number of

states which have the same start and end positions

are 100 (102), this is about 17 times larger than the

case that just use current state which needs only 6

states.

The straight-forward implementation of this mod-

eling in semi-CRFs requires a prohibitive computa-

tional cost. In biomedical documents, there are quite

a few entity names which consist of many words

(8-word-names are not rare). This makes it diffi-

cult for us to use semi-CRFs, even a original ones,

for biomedical NER because we have to setL to

be eight or larger, whereL is the upper bound of

the length of possible chunks in semi-CRFs. More-

over, in order to take into account the dependency

between named entities of different classes appear-

ing in a sentence, we need to incorporate multi-class

into a single probabilistic model. For example, in

the shared task in COLING 2004 JNLPBA (Kim

et al., 2004) the number of labels are six (“pro-

tein”, “ DNA”, “ RNA”, “ cell line”, “ cell type” and

“other”). This also increase the computational cost

when we adopt the1st order semi-CRF.

To realize the model, we propose two methods.

The first is using thefeature forest(Miyao and Tsu-

jii, 2002), which is in short, employing dynamic pro-

gramming at training “as much as possible”, and the

second is employing a filtering method using a light-

classifier to remove unnecessary state candidates.

4.1 Feature Forest

In estimating semi-CRFs, we can use an efficient dy-

namic programming algorithm, which is similar to



the forward-backward algorithm. The proposal here

is a more general framework for estimating sequen-

tial conditional random fields.

This framework is based onthe feature forest

model, which was originally proposed for disam-

biguation models for parsing. A feature forest

model is a maximum entropy model defined over

feature forests, which are abstract representations

of an exponential number of sequence/tree struc-

tures. A feature forest is an “and/or” graph; in Fig-

ure 4.1, circles represent “and” nodes (conjunctive

nodes) while boxes denote “or” nodes (disjunctive

nodes). Feature functions are assigned to conjunc-

tive nodes. Each sequence in a feature forest is

obtained by choosing a conjunctive node for each

disjunctive node. For example, Figure 4.1 repre-

DNA
protein

O DNA
protein

O: and node (conjunctive node): or node (disjunctive node)
Figure 2: Example of feature forest.

sents3 × 3 = 9 sequences, since each disjunctive

node has three candidates. It should be noted that

feature forests can represent an exponential num-

ber of sequences with a polynomial number of con-

junctive/disjunctive nodes. If probabilistic events, in

our case, sequences of named entity tags, are repre-

sented by feature forests, a maximum entropy model

of the whole sequence can be estimated using a dy-

namic programming algorithm.

Hence, our concern here is to represent all possi-



ble tag sequences with compact feature forests. Our

strategy is to pack “equivalent” states as far as possi-

ble. “Equivalent” states mean that they yield equiv-

alent feature functions. When different states yield

equivalent feature functions, they may be packed

into one node in a feature forest.

For example, suppose the task of tagging “PRO-

TEIN”, “DNA”, “O-PROTEIN”, or “O-DNA”,

where the latter two tags are “O” tags while distin-

guishing previous named entity tags. When we sim-

ply apply a1st order semi-CRF, we must distinguish

states that have different previous states (Figure 3,

left). However, when we want to distinguish “pre-

vious named entity tags” rather than the immediate

previous states, feature forests can represent these

events more compactly. The right figure in Figure

2 shows that the disjunctive nodes following “PRO-

TEIN” and “O-PROTEIN” nodes are packed into

one. This is because they share the equivalent infor-

mation: the previous named entity tag was “PRO-

TEIN”. This means that these states yield equiva-

lent feature functions. By this method, we can pack

states by ignoring unnecessary information (such as

whether the previous state was “O”), and will ob-

tain a more compact representation of named entity

sequences.

Another advantage of using feature forests is that

we can filter out states beforehand to reduce the size

of feature forests. This is because the dynamic pro-

gramming algorithm of feature forest models is ap-

plicable to feature forests with any shape. For exam-

ple, we can remove “unlikely” states from feature



forests, and this will reduce the training cost. We

discuss a method of filtering in the following sec-

tion.

4.2 Filtering with naive Bayes classifier

We introduce a filtering method to remove low-

probability candidate states. This is the first step

of our systems. After this filtering step, we con-

struct semi-CRFs on the remaining candidate states.

Therefore, the aim of this filtering is to reduce

the number of candidate states without producing

wrongly removed correct entities. This idea is sim-

ilar to the method proposed by Tsuruoka and Tsu-

jii, (2005) for chunk parsing, in which implausible

phrase candidates are removed beforehand.

We construct a binary naive Bayes classifier us-

ing the same training data as those for semi-CRFs.

In training and inference, we enumerate all possi-

ble chunks (the max length of a chunk isL as in

semi-CRFs) and then classify those to correct ones

or not. Table 1 lists the features used in the naive

Bayes classifier.

Since the purpose of the filtering is to reduces the

computational cost, rather than to improve the per-

formance, we chose the acceptance rate, which de-

termines the correct entities to remove the entity, so

that the recall of filtering results would be high.

4.3 Features

Table 2 lists the features used in the classifier in

semi-CRFs. We give a detailed description about

some of the features. “Length” and Length and

EndWords captures the tendency of the length of a

named entity which cannot encoded in token-level



protein
O-protein
protein endPos: 8prev: protein

endPos: 8prev: O-protein
protein

O-protein
protein endPos:8prev:protein

endPos: 8prev: O-proteinpacked
1st order semi-CRF with label modification Packed representation

Figure 3: Example of featureforest representation of various semi-CRFs. Left:1st order semi-CRFs with

label modification. The states whose have same end position and label are packed. Right:1st order semi-

CRFs with label modification. The states whose have same end position and prev label information are

packed. Since “O-PROTEIN” transfers “PROTEIN” information, which is same as the “PROTEIN” label states,

they are packed together.

features. ‘Wordshapeare the features indicate cap-

italization, digitalization and word formation infor-

mation. “Previous Label” is the previous named

entity labels (not “O”). For example, when the la-

bels of the chunk sequence are “protein” “ others”

“others” “ DNA”, the “Previous Label” feature of

the 4th entity is “protein”. “ Prev State and Prev

Word ” are features that capture especially conjunc-

tion words such as “and” or “ , (comma)”. For in-

stance, “OCIM1 and K562” which “OCIM1” and

“K562” both are assignedcell line labels. Even

if the classifier can determine only “OCIM1” as a

cell line , this feature helps to infer that the “K562”

is assigned asCELL LINE .. “Count feature” is a



Table 1: Features used in the naive Bayes Classifier

for the entity candidate:ws, ws+1, ...,we. spi is the

result of shallow parsing atwi.

Feature Name Example of Features

Start/End Word ws, we

Inside Word ws, ws+1, ... ,we

Context Word ws−1, we+1

Start/End SP sps, spe

Inside SP sps, sps+1, ...,spe

Context SP sps−1, spe+1

feature which captures the tendency that named en-

tities repeatedly appear in a same sentence.

5 Experiments

5.1 Experimental Setting

Our experiments were performed on the training and

evaluation set provided by the shared task in COL-

ING 2004 JNLPBA (Kim et al., 2004). The training

data used in this shared task came from the GENIA

version 3.02 corpus. In the task there are five se-

mantic labels:protein, DNA, RNA, cell line and

cell type. The training set consists of 2000 abstracts

from MEDLINE, and the evaluation set consists of

404 abstracts. We divided the original training set

to 1800 abstracts and 200 abstracts, and the former

is used as the training data and the latter is used

as the development data. For semi-CRFs, we used



amis2 for training semi-CRF with feature-forest. We

usedGENIA taggar3 for POS-tagging and shallow-

parsing.

Table 3 shows the detail of the task setting. Table

4 shows the length distribution of the named entities

in the training set. We setL = 10 for training and

evaluation, whereL is the upper bound of the length

of possible chunks in semi-CRFs. Notice that there

are many long entities in the training set.

5.2 Results

We first evaluate the effect of the filtering in the final

performance. In this experiment, we cannot examine

the performance without filtering using all the train-

ing data, because training on all the training data

without filtering required much larger memory re-

2http://www-tsujii.is.s.u-tokyo.ac.jp/ yusuke/amis/

3http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

Table 4: Length distribution of entities in the train-

ing set

Length # entity Ratio

1 21646 42.19

2 15442 30.10

3 7530 14.68

4 3505 6.83

5 1379 2.69

6 732 1.43

7 409 0.80

8 252 0.49

>8 406 0.79

total 51301 100.00

sources (estimated about 80G Byte) than our exper-

imental environment. We thus compared the result

of the classifiers with and without the filtering us-



ing only 2000 sentences as training data. Table 6

shows the result of the total system with different

filtering thresholds. The difference between the two

filtering threshold is about 1.4% in F-score, this is

near to the number of the falsely removed positive

entities in the filtering phase (Table 5), which indi-

cates that the result of filtering phase and labeling

phase are independent. We also found that the preci-

sion of filtering is higher than one without filetring.

This result can be explained by that the naive Bayes

classifier in filtering phase uses all training data, so

it can remove the false positive entities which can-

not be detected by semi CRFs using limited training

data. So this improvement may not be expected in

the setting where we use all training data in compar-

ison with of the filtering methods.

Table 5 shows the filtering performance on the

training and evaluation data. The naive Bayes clas-

sifiers effectively reduced the number of candidate

states with very little falsely removed correct enti-

ties.

We next evaluate the effect of long-distance in-

formation in the final performance. Table 5.2 shows

the result of the classifier performance with previ-

ous state information and without. This results indi-

cate that previous information improves the perfor-

mance.

Table 8 shows the result of the overall perfor-

mance of our best setting, which uses state features

and1.0−15 acceptance rate for filtering. This result

is similar to the results of other systems, that is, the

performance of cellline is not good, and the perfor-



Table 7: Overall performance on the evaluation data

development Set

Recall Precision F-score

Baseline 71.55 78.01 74.64

+ Prev State 72.09 78.47 75.14

Evaluation Set

Recall Precision F-score

Baseline 72.59 70.16 71.36

+ Prev State 72.65 70.35 71.48

mance of the right boundary identification is better

than that of the left boundary identification.

Table 9 shows a comparison between our system

and other state-of-the-art systems. Our system has

achieved a comparable performance to the state-of-

the-art without using external resources and con-

ducting pre/post processing. For example, Zhou et.

al (2004) utilize the gazetteers, abbreviation infor-

mation. Kim et. al (2005) used original Genia cor-

pus to employ other semantic classes information for

identification term boundary. Finkel et. al (2004)

used gazetters, web-querying, the surrounding ab-

stract, frequency counts from BNC corpus. Settle

(2004) used semantic domain knowledge of 17 kinds

of lexicons. Our approach and exploitation of exter-

nal resources/knowledge do not conflict but are com-



Table 9: Comparison with other systems

System Recall Precision F-score

Zhou et. al (2004) 75.99 69.42 72.55

Our system 72.65 70.35 71.48

Kim et.al (2005) 72.77 69.68 71.19

Finkel et. al (2004) 68.56 71.62 70.06

Settles (2004) 69.0 70.0 69.5

plementary ones. We will examine the combination

of these techniques as a future work.

6 Conclusion

We presented a probabilistic model that incorporates

long-distance dependencies into the semi-CRFs. We

also presented a filtering method and an efficient

training method which enable us to use not only

semi-CRFs which include long named entities, but

also non-local information. Our system achieved

71.48% F-score without gazetters, post-processing

and external resouces, which is even close to the best

performance system which utilize external resources

and rule based post-processing. In the next stage of

our research, we will make more general probilis-

tic model which can incorporate non-local informa-

tion. We also hope to apply one method to shallow

parsing, in which the entity may be long and local

information is important.
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Table 2: Feature templates used in recognition chunk.s := ws ws+1 ... we is the target chunk wherews and

we represent the words at the beginning and the ending of the target chunk respectively.pi is the part of

speech tag atwi. sci is the shallow parse result atwi.

Feature Name Example of features

Whole chunk ws + ws+1 + ... +we

Word/POS/SC with Position BEGIN + ws, END +we, IN + ws+1, ..., IN +we−1, BEGIN +ps,...

Word/POS/SC End Bi-grams we−1 + we, pe−1 + pe, sce−1 + sce

Context Uni-gram/Bi-gram ws−1, we+1, ws−2 + ws−1, we+1 + we+2, ws−1 + we+1

Length, Length and End Word |s|, |s|+we

Word shape WS(ws + ws+1 + ... + we)

Prev State /and Prev Word PrevState, PrevState + ws−1

Count Feature the frequency ofwsws+1..we in a sentence is more than one

Prefix/Suffix of Chunk 2/3-gram character prefix ofws, 2/3/4-gram character suffix ofwe



Table 3: The number of each type of named entity in the shared task data of COLING 2004 JNLPBA

protein DNA RNA cell type cell line ALL

Training Set 30269 9533 951 6718 3830 51301

Evaluation Set 5067 1056 118 1921 500 8662

Table 5: Filtering results using the naive Bayes classifier.p is the acceptance rate for filtering

data # entity candidate # remaining candidate reduction ratio recall

training (p = 1.0−12) 4179662 505538 0.14 0.984

training (p = 1.0−15) 4179662 725227 0.20 0.993

development (p = 1.0−12) 418626 57960 0.14 0.985

development (p = 1.0−15) 418626 82788 0.20 0.994



Table 6: Performance with filtering at the development data.(< 1.0−12) indicate the acceptant rate for

filtering is1.012 and(1.0)15 as well.

Recall Precision F-scoreMemory Usage (MB) Training Time (s)

Small Training Data = 2000 sentence

Filtering (< 1.0−12) 64.22 70.62 67.27 600 1080

Filtering (< 1.0−15) 65.34 72.52 68.74 870 2154

Without filtering 65.77 72.80 69.10 4238 7463

All Training Data = 16713 sentence

Filtering (< 1.0−12) 70.05 76.06 72.93 10444 14661

Filtering (< 1.0−15) 72.09 78.47 75.14 15257 31636

Without filtering Not available Not available



Table 8: Performance of our system on the test set

Fully Correct Right Correct Left Correct

Class Recall Precision F-score F-score F-score

protein 77.74 68.92 73.07 79,97 77.94

DNA 69.03 70.16 69.59 76.47 72.46

RNA 69.49 67.21 68.33 76.67 70.83

cell type 65.33 82.19 72.80 81.38 73.61

cell line 57.60 53.14 55.28 65.26 58.35

overall 72.65 70.35 71.48 78.91 75.19


