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Abstract

This paper presents a part-of-speech tagger which are specifically tuned for biomedical texts.
We have built the tagger using maximum entropy models with inequality constraints, which have
high generalization capacity and can produce compact models. The tagger was trained on a corpus
containing newspaper articles and biology texts so that it works well on various types of biomedical
documents. Experimental results using the Penn Treebank corpus and the GENIA corpus show
that our tagger performs very well on both corpora (96.9% precision on the Penn Treebank, 98.1%
on the GENIA corpus). We also present a named-entity tagger which employs a new strategy to
make use of the features that are not available in conventional strategies. The tagger exhibited
an f-score of 70.7% on a standard evaluation set. The taggers presented in this paper are publicly
available on our web-site.
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1 Introduction

Since huge amount of biomedical knowledge is described in texts (e.g. MEDLINE abstracts), auto-
matic information extraction from biomedical documents increasingly plays an important role for the
researchers in the biomedical domain.

For extracting information from texts, many natural language processing (NLP) techniques can be
employed. For example, a simple approach to extract information about protein-protein interaction
is to write regular expressions about part-of-speech tags and noun-phrases. A more sophisticated
approach would be to use parsers to precisely analyze syntactic and semantic structure of the sentences.

For the documents like newspaper articles, many NLP tools are publicly available, including part-
of-speech taggers, chunkers, and parsers. However, they do not necessarily work well on biomedical
documents because the characteristic of biomedical documents are quite different from that of news-
paper articles, which are often used as the training data for general-purpose NLP tools.

In this paper, we first present a part-of-speech tagger which are specifically tuned for biomedical
texts. Since the part-of-speech tags assigned to the words significantly affect the performance of the
subsequent processings, a part-of-speech tagger must be as reliable as possible. In order to build a
robust part-of-speech tagger, we adopt a maximum entropy model with inequality constraints [7] and
use a training set that contains both newspaper articles and biology texts.

We also present a named-entity tagger which employs a new strategy to make use of the features
that are not available in conventional strategies. The performance of the tagger is evaluated on a
common evaluation data set.
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Our aim is to make reliable NLP tools for biomedical documents publicly available and to promote
deeper analyses. The taggers presented in this paper are downloadable from our web-site.

This paper is organized as follows. Section 2 describes the model of the proposed part-of-speech
tagger. Section 3 describes the algorithm of the named entity tagger. Experimental results are
provided in Section 4. Finally, Section 5 offers some concluding remarks.

2 Part-of-speech Tagging

Part-of-speech tagging is a basic processing for natural language processing. The task is to assign each
word with its part-of-speech tag. Because deeper processings such as chunking and parsing generally
trust the part-of-speech tags assigned to the words, the tags must be highly accurate.

In order to build a part-of-speech tagger, we need a corpus for training. The Penn Treebank
corpus [12], which is a collection of newspaper articles, contains part-of-speech tags and can be used
as training data. However, since the tagger must work well on biomedical documents, we need a corpus
of such documents. We briefly review the GENIA part-of-speech corpus in the following section.

2.1 The GENIA Part-of-speech corpus

We have made a part-of-speech (POS) corpus, where POS information was annotated to the raw texts
of the GENIA corpus. In the corpus, POS is assigned to each word in the text according its syntactic
role. The principle is applied even to the words that are part of multi-word to terms. That is, each
component of a multi-word term is assigned a POS according to the syntactic role of the word, not
according to the role of the term. The annotation scheme for the POS corpus is based on that of Penn
Treebank (PTB) corpus widely used in constructing general-purpose statistics -based NLP-systems.
We modified the PTB scheme slightly in order to achieve consistent annotation: the use of NNP and
NNPS tags is limited so that only the names of the months, the names of authors of the papers,
journals, research institutes, and initials of patients and other people who contributed to experiments
described in the paper, and all other nouns are tagged as common nouns, even when a person’s name
appears as a part of other names (e.g., Cushing’s syndrome, Southern blotting).

The decision was made because the need for the distinction is rather small from the viewpoint of
syntactic processing such as parsers while the distinction is costly for consistency due to the abundance
of non-proper names that begin with a capital letter in biology texts. Prefixes and postfixes are tagged
based on their syntactic role. For example, the token ‘up-’ in ‘up- and downregulation’ is assigned an
RP (particle) tag because it originate from a particle (em regulate up), and an NNS (plural noun) tag
is assigned to the token ‘s’ in ‘factor(s)’.

The POS corpus (2,000 annotated abstracts) is publicly available in three formats. One is a “PTB-
like” format where there are one TOKEN/POS pair per line. Another is an XML format where tokens
are represented in w elements and the POS is represented as the c attribute. Yet another is a “merged”
format where the POS annotation is merged into the term corpus (Figure 1).

In the “merged” version, it is assumed that the w elements are inside the cons elements. However,
sometimes a token was split by the <cons> tags, i.e.,a technical term represented by a cons element is
inside a token represented by a w element. For example, in Figure 1 the token IL-2-mediated because
of <cons> tags around IL-2. In such cases, we made each fragment one w element. The last fragment
of the split token is assigned the original POS assigned to the whole token and all others are assigned
* as the value of the c attribute, as shown in Figure 1 This phenomenon shows that tokenization is
problematic in biology texts.
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<abstract>
<sentence><cons lex=”IL-2-mediated T cell proliferation” sem=”G#other name”><cons lex=”IL-
2” sem=”G#protein molecule”><w c=”*”>IL-2</w></cons><w c=”JJ”>-mediated</w> <cons
lex=”T cell” sem=”G#cell type”><w c=”NN”>T</w> <w c=”NN”>cell</w></cons> <w
c=”NN”>proliferation</w></cons> <w c=”VBZ”>is</w> <w c=”DT”>a</w> <w c=”JJ”>critical</w>

<w c=”JJ”>early</w> <w c=”NN”>event</w> ...</sentence>
...

Figure 1: POS information merged with the GENIA term corpus

Table 1: Contextual predicates used in the part-of-speech tagger

ti−1 = X

ti−1wi = X

wi−1 = X

wi = X

wi+1 = X

wi−1wi = X

wiwi+1 = X

the first letter of wi is uppercase
X is suffix of wi, |X| ≤ 5

2.2 Maximum Entropy Markov Model

Our tagger adopts a first-order Markov model for part-of-speech tagging. The states of the model
represent part-of-speech tags. Given a sentence {w1...wn}, a tag sequence candidate {t1...tn} has
conditional probability:

P (t1...tn|w1...wn) =
n∏

i=1

p(ti|ti−1w1...wi−1) (1)

Transition probabilities are estimated using a maximum entropy model. The model can make
use of the information of the preceding tags and all the words in the sentence. Table 1 shows the
contextual features used in our tagger.

Maximum entropy models require the devices to alleviate the problem of overfitting. We adopt
maximum entropy modeling with inequality constraints proposed by Kazama and Tsujii [7]. This
model has high generalization capacity comparable to the use of Gaussian priors [3], which is the most
popular method to avoid overfitting. This model has an advantage that the solution of parameter
estimation becomes sparse, resulting in a compact set of parameters. This advantage is especially
useful in terms of developing practical tools because compact models require less computational cost
and memory in run-time.

2.3 Training

The GENIA corpus consists of the abstracts that have the three MeSH keywords, “Human”, “Blood”,
and “Transcription Factors”. So the corpus is a good training set for biology documents including
many gene and protein names. However, the corpus is not sufficient to achieve high performance for
various types of documents in MEDLINE abstracts such as medical documents. For that reason, we
used not only the GENIA corpus but also the Penn Treebank corpus for training.
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… a  critical  role  of  the  ZIP  site  for  IL-2  promoter  activity  .
O     O        O   O   O     B      I     O     B           I            O     O

Figure 2: The BIO framework for named entity recognition

w1 w2 w3 w4

Figure 3: The sub-word-sequences for a four-word sentence

3 Named-entity Tagging

To be able to extract information about proteins from a text, one has to first recognize their names
in it. This kind of problem has been extensively studied in the field of natural language processing
as the named-entity recognition task. The most popular approach is to train the recognizer on an
annotated corpus by using a machine learning algorithm, such as Hidden Markov Models, support
vector machines (SVMs) [17], and maximum-entropy models [1]. The task of the classifier in the
machine learning framework is to determine the text regions corresponding to protein names.

Ohta et al. provided the GENIA corpus [13] with named-entity tags, which could be used as
a gold-standard for evaluating and training named-entity recognition algorithms. The corpus has
fostered research on machine learning techniques for recognizing biological entities in texts [15, 9, 6].

3.1 Method

The most popular approach for machine-learning based named entity recognition is to assign a tag to
each word. Figure 2 shows an example of such approach, where the tagger assigns ‘B’ to the beginning
of a term, ‘I’ to the inside of a term, and ‘O’ to the other words.

In the BIO framework, you do not have the information of the last word of a term when looking
at the beginning of the term. Therefore, for example, you cannot make use of a feature concerning
the whole word-sequence of the term.

In this paper, we take a different approach. We consider all the sub word-sequences of a sentence as
the candidates of named entities, and classify each candidate sub word-sequence by machine learning
(Figure 3). This approach enables us to use various types of features that cannot be incorporated in
the BIO framework.

However, if we take this approach in a naive way, we face a serious problem of computational
cost. Because the number of sub word-sequence is O(n2) of the length of a sentence, the number of
candidates becomes prohibitively large if the sentence is long.

In a preliminary experiment, we tried to train the classifier using all the sub word-sequences in the
training data. However, it turned out that it was impossible to train because the training required
too much memory and time.

To reduce the burden of the classifier, we propose a two-phase approach. In the first phase, we
select named-entity candidates from all the sub word-sequences with a simple statistical method that
requires far less computational cost than machine learning. In the second phase, a machine learning
algorithm is employed to choose named-entities from the selected candidates.
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Table 2: Contextual predicates used in the named-entity tagger

wb−2 = X

wb−1 = X

we+1 = X

we+2 = X

wb−2wb−1 = X

wb−1we+1 = X

we+1we+2 = X

wb = X

we = X

wi = X, i ≥ b, i ≤ e

the first and the last letter of wi are uppercase
X is suffix of we, |X| ≤ 5

Table 3: Training sets for the experiments of part-of-speech tagging

Penn Treebank GENIA corpus

Training Set A 39,832 0
Training Set B 0 18,508
Training Set C 39,832 18,508

The problem is how to select candidates in the first phase. The goal of the first phase is to
efficiently filter out the word-sequences that cannot be a named entity. Intuitively, one can rule out
the word-sequences that include common English words such as “We”, “show”, and “are”. In order
to automatically perform such filtering, we first calculate for every word the probability that the
word becomes a part of a named-entity. Then we discard all the candidates including the words, the
probability of which is lower than the predefined threshold.

We use a maximum entropy classifier in the second phase. Some representative features used in the
model are shown in Table 2, where b and e represent the starting and ending position of the candidate
term respectively.

4 Experiment

4.1 Part-of-speech tagging

We prepared three sets of sentences for training. Table 3 shows the number of sentences contained in
the training sets. Training set A contains all the sentences in Sections 2 to 21 in the Penn Treebank
corpus. Training set B was constructed from the GENIA corpus by random selection. Training set C
was made by merging set A and B.

Training sets and test sets are mutually exclusive: no sentences in the training sets were included
in the test sets. The test set for the Penn Treebank was constructed from Section 23, which is often
used as an evaluation set. The test set for the GENIA corpus consists of 2,036 sentences.

Table 4 shows the performance of the taggers trained on different sets of data. The tagger trained
on set A achieved 97.0% on the Penn Treebank, which is very high. However, the tagger exhibits
significantly lower performance on the GENIA corpus. On the other hand, the tagger trained on the
GENIA corpus performs quite well on the GENIA corpus, but the performance on the Penn Treebank
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Table 4: Part-of-speech tagging performance

Penn Treebank GENIA corpus

Our tagger trained on Set A 97.0% 84.3%
Our tagger trained on Set B 75.2% 98.1%
Our tagger trained on Set C 96.9% 98.1%

Table 5: Comparing with the TnT tagger

Penn Treebank GENIA corpus

TnT tagger with the precompiled PTB model 97.4% 84.4%
TnT tagger trained on Set A 96.7% 84.3%
TnT tagger trained on Set B 80.1% 97.9%
TnT tagger trained on Set C 96.5% 97.5%

is disastrous.

Note that the tagger trained on set C works surprisingly well on both corpora. The degradation of
the performance from the taggers specifically trained for each corpus is negligible. This result indicates
the robustness of the tagger, and it is expected to work well on other documents in the biomedical
domain.

For comparison, we performed experiments using the TnT tagger [2], which is one of the state-of-
the-art taggers publicly available. Table 5 shows the performance of the TnT tagger. The tagger has
a pre-compiled model that was constructed from the Penn Treebank corpus, and the performance is
given in the first row. The results indicate that the general-purpose tagger performs quite poorly on
the biology texts. Note that our tagger trained on Set C performs significantly better than the TnT
tagger trained on the same set.

The pre-compiled model showed a slightly higher precision on the Penn Treebank than our tagger.
However, the reason is that the precompiled model was created by using the sentences in the test set,
so it is natural that the tagger showed good performance on the data.

As stated in 2.1, the annotation policy of the of the GENIA corpus is slightly different from that of
the Penn Treebank corpus. The GENIA corpus does not distinguish NNP from NN to keep annotation
consistent. This disparity of annotation policy can make the result of the TnT tagger look worse than
it really is. In order to clarify the effect of the policy difference, we have conducted experiments by
not distinguishing NNP from NN. The results are shown in Table 6. The performance of the TnT
tagger is 90.0%, which is still much lower that of our tagger trained on set C. This result confirms the
advantage of our tagger over the TnT tagger.

Table 6: Comparing with the TnT tagger (NNP = NN, NNPS = NNS)

Penn Treebank GENIA corpus

TnT tagger with the precompiled PTB model 97.5% 90.0%
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Table 7: Comparing with Other Models

Recall Precision F-score

Support Vector Machines & HMM [18] 76.0% 69.4% 72.6%
Our model 72.8% 68.8% 70.7%
Maximum Entropy Markov Model [5] 71.6% 68.6% 70.1%
Conditional Random Field [14] 70.3% 69.3% 69.8%

Table 8: Performance on Each Category

Recall Precision F-score

protein 76.8% 69.5% 73.0%
cell line 54.4% 54.6% 54.5%
DNA 65.0% 68.1% 66.5%
cell type 65.6% 78.2% 71.3%
RNA 68.6% 66.9% 67.8%

4.2 Named entity tagging

Until recently, it was difficult to compare the performance of named entity taggers because they use
different corpora for evaluation. Kim et al. [8] provided a training and testing corpora for the shared
task in the COLING workshop, which can be used for the standard evaluation set for named-entity
taggers. In this paper, we used the data for evaluating our tagger.

Table 7 shows the performance of our model and the best three models reported in [8]. The
performance of our tagger is not as good as the best model proposed by [18]. One reason suspected is
that they use a kind of dictionary and it might have boosted the performance of their model. Although
the performance of our model is not the best, the results that our model achieved better performance
than a Maximum Entropy Markov Model and a Conditional Random Field, which are state-of-the-art
techniques for named-entity recognition, are promising.

4.3 Related Work on Named-Entity tagging

Kazama et al. [6] reported an F-measure of 56.5% on the GENIA corpus version 1.1 using SVMs.
Collier et al. [4] reported an F-measure of 75.9% on 100 MEDLINE abstracts using a Hidden Markov
Model. Tanabe and Wilbur [16] achieved 85.7% precision and 66.7% recall using a combination of
statistical and knowledge-based strategies. They used a transformation-based part-of-speech tagger
to recognize single word protein names, and hand-crafted rules to filter out false positives and recover
false negatives. Since the evaluation corpora used in these experiments were different from the corpus
used in this paper, the results are not directly comparable.

Lee et al. [11] reported an F-measure of 69.2% on the GENIA corpus version 3.0 using SVMs.
Shen et al. achieved an F-measure of 70.8% on the same corpus by incorporating various features
into a Hidden Markov Model. Since the difference between the GENIA corpora versions 3.0 and 3.02,
which we used in this paper, is small, their results suggest that their methods worked better than ours
regarding recognition. However, their approaches do not provide ID information on recognized terms.

Krauthammer et al. [10] proposed a dictionary-based method of gene/protein name recognition.
They used BLAST for approximate string matching by mapping sequences of text characters into
sequences of nucleotides that could be processed by BLAST. They achieved a recall of 78.8% and a
precision of 71.1% evaluated with a partial match criterion, which was not as stringent as our criterion.
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5 Conclusion

We have developed a part-of-speech tagger and a named-entity recognizer which are specifically tuned
for biomedical documents.

In the experiments using the Penn Treebank corpus and the GENIA corpus, the part-of-speech
tagger exhibited state-of-the-art performance on both corpora. The tagger will serve as an ideal
preprocessor for a deeper analysis including chunking and parsing.

The named entity recognizer can identify the terms of protein, DNA, RNA, cell-line, and cell-type
with an f-score of 70.7%, which is currently the second best performance on a common evaluation set
for biological named-entity recognition.

The tools presented in this paper is publicly available on

http://www-tsujii.is.s.u-tokyo.ac.jp/t̃suruoka/genia/tagger/
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