
Bidirectional Inference with the Easiest-First Strategy
for Tagging Sequnce Data

Abstract

This paper presents a bidirectional in-
ference algorithm for sequence labeling
problems such as POS tagging and text
chunking. The algorithm can enumerate
all possible decomposition structures and
find the highest probability sequence to-
gether with the corresponding decomposi-
tion structure in polynomial time. We also
present an efficient decoding algorithm
based on the easiest-first heuristics, which
gives comparably good performance to
full bidirectional inference with extremely
less computational cost. Experimental re-
sults of POS tagging, base NP chunking
and text chunking show that the proposed
bidirectional inference methods consis-
tently outperform unidirectional inference
methods and our bidirectional MEMMs
give comparative performance achieved
by state-of-the-art learning algorithms in-
cluding kernel support vector machines.

1 Introduction

The task of labeling sequence data such as part-of-
speech tagging, phrase chunking and named entity
tagging is one of the most important tasks in natural
language processing.

Conditional random fields (CRFs) (Lafferty et al.,
2001) have recently attracted much attention be-
cause they are free from so-called label bias prob-
lems which reportedly degrade the performance of

sequential classification approaches like maximum
entropy markov models (MEMMs).

Although sequential classification approaches
suffer from label bias problems, they have several
advantages over CRFs. One is the efficiency of train-
ing. CRFs need to perform dynamic programming
over the whole sentence in order to compute feature
expectations in each iteration of numerical optimiza-
tion. In general training higher-order CRFs requires
huge computational resource.

Another advantage is that one can employ a vari-
ety of machine learning algorithms as a local clas-
sifier. In the machine learning community, there is
huge amount of work about developing classifica-
tion algorithms that have high generalization capac-
ity. Being able to incorporate such state-of-the-art
classification algorithms is quite important. Indeed,
sequential decomposition approaches with kernel
support vector machines offer competitive perfor-
mance in many tagging tasks (Kudo and Matsumoto,
2001; Gimenez and Marquez, 2003).

One obvious way to improve the performance of
a sequential classification method is to enrich the in-
formation that the local classifiers can use. In par-
ticular, the information about neighboring tags are
helpful in most cases. However in general the lo-
cal classifier cannot have the information about fu-
ture tags (e.g. the right-side tags in left-to-right
decoding). To make use of the information about
future tags, Toutanova proposed a decoding algo-
rithm based on bidirectional dependency networks
(Toutanova et al., 2003) and achieved the best ac-
curacy on POS tagging on the Wall Street Journal
corpus. As they pointed out in their paper, however,

t1

o1

(a)

(b)

(c)

(d)

t2 t3

o2 o3

t1 t2 t3

t1 t2 t3

t1 t2 t3

o1 o2 o3

o1 o2 o3

o1 o2 o3

Figure 1: Different structures for decomposition

the method potentially suffers from “collusion” ef-
fects which make the model lock onto conditionally
consistent but jointly unlikely sequences.

In this paper we present a natural way for making
use of future tags. Our inference method considers
all possible ways of decomposition and choose the
“best” decomposition structure, so the information
about future tags is used in appropriate situations.

2 Bidirectional Inference

The task of labeling sequence data is to find the se-
quence of tags t1...tn that maximizes the following
probability given the observation o = o1...on

P (t1...tn|o). (1)

Observations are typically words and their lexical
features in the task of POS tagging. Sequential clas-
sification approaches decompose the probability as
follows,

P (t1...tn|o) =
n∏

i=1

p(ti|t1...ti−1o). (2)

This is a left-to-right decomposition. If we take
a first-order markov assumption, the equation be-

comes

P (t1...tn|o) =
n∏

i=1

p(ti|ti−1o). (3)

Then we can use a probabilistic classifier trained
with the preceding tag and observations in order to
obtain p(ti|ti−1o) for local classification. A com-
mon choice for the local probabilistic classifier is
maximum entropy classifiers (Berger et al., 1996).
The best tag sequence can be efficiently computed
by using a Viterbi decoding algorithm in polynomial
time.

A right-to-left decomposition is

P (t1...tn|o) =
n∏

i=1

p(ti|ti+1o). (4)

These two ways of decomposition is widely used
in various tagging problems in natural language pro-
cessing. The point is that you have only the infor-
mation about the preceding (or following) tags when
performing local classification whichever way of de-
composition you take.

From the viewpoint of local classification, we
want to give the classifier as much information as
possible because the information about neighboring
tags are useful in general.

Consider the situation where we are going to an-
notate a three-word sentence with part-of-speech
tags. Figure 1 shows four possible ways of decom-
position. They correspond to the following equa-
tions:

(a) P (t1...t3|o) = P (t1|o)P (t2|t1o)P (t3|t2o) (5)

(b) P (t1...t3|o) = P (t3|o)P (t2|t3o)P (t1|t2o) (6)

(c) P (t1...t3|o) = P (t1|o)P (t3|o)P (t2|t3t1o) (7)

(d) P (t1...t3|o) = P (t2|o)P (t1|t2o)P (t3|t2o) (8)

(a) is a standard left-to-right decomposition, and
(b) is a right-to-left decomposition. Notice that in
decomposition (c) the local classifier can use the in-
formation about the tags in both sides when deciding
t2. If, for example, the central word is difficult to tag
(e.g. an unknown word), we might as well take the
decomposition structure (c) because the local clas-
sifier can have rich information when deciding the
tag of the most difficult word. In general if we have

an n-word sentence and adopt a first-order markov
assumption, we have 2n possible ways of decom-
position because each of the n edges in the corre-
sponding graph has two directions (left-to-right or
right-to-left).

Our bidirectional inference method is to consider
all possible decomposition structures and choose the
“best” structure and tag sequence. We will show in
the next section that this is actually possible in poly-
nomial time by dynamic programming.

As for learning, let us look at the equations of four
different decompositions above. You can notice that
there are only four types of local conditional prob-
abilities: P (ti|ti−1o), P (ti|ti+1o), P (ti|ti−1ti+1o),
and P (ti|o).

This means that if we have these four types of lo-
cal classifiers, we can consider any decomposition
structure in the decoding time. These local classi-
fiers can be obtained by standard training with cor-
responding neighboring tag information. Training
the first two types of classifiers is exactly the same
as the training of left-to-right and right-to-left clas-
sifiers respectively.

If we take a second-order markov assumption, we
need to train 16 types of local classifiers because
each of the four neighboring tags of a classification
target has two possibilities of availability. In gen-
eral, if we take a k-th order markov assumption, we
need to train 22k types of local classifies.

2.1 Polynomial Time Inference

This section describes an algorithm to find the de-
composition structure and tag sequence that give the
highest probability. The algorithm for first-order
cases is an adaptation of the algorithm for decoding
the best sequence on a bidirectional dependency net-
work introduced by (Toutanova et al., 2003), which
is originated from the Viterbi decoding algorithm for
second-order markov models.

Figure 2 shows a polynomial time decoding al-
gorithm for our bidirectional inference. It enumer-
ates all possible decomposition structures and tag se-
quences, and find the highest probability sequence.
Polynomial time is achieved by caching. Note that
for each local classification, the algorithm needs to
choose the appropriate local classifier by taking into
account the directions of the adjacent edges of the
classification target.

function bestScore()
{

return bestScoreSub(n+2, 〈end, end, end〉, 〈L, L〉);
}

function bestScoreSub(i+1, 〈ti−1, ti, ti+1〉, 〈di−1, di〉)
{

// memorization
if (cached(i+1, 〈ti−1, ti, ti+1〉, 〈di−1, di〉))

return cache(i+1, 〈ti−1, ti, ti+1〉, 〈di−1, di〉);
// left boundary case
if (i = -1)

if (〈ti−1, ti, ti+1〉 = 〈start, start, start〉)
return 1;

else
return 0;

// recursive case
P = localClassification(i, 〈ti−1, ti, ti+1〉, 〈di−1, di〉);
return maxdi−2

maxti−2
P×

bestScoreSub(i, 〈ti−2, ti−1, ti〉, 〈di−2, di−1〉);
}

function localClassification(i, 〈ti−1, ti, ti+1〉, 〈di−1, di〉)
{

if (di−1 = L & di = L) return P (ti|ti+1, o);
if (di−1 = L & di = R) return P (ti|o);
if (di−1 = R & di = L) return P (ti|ti−1ti+1, o);
if (di−1 = R & di = R) return P (ti|ti−1, o);

}

Figure 2: Pseudocode for bidirectional inference for
the first-order conditional markov models. di is the
direction of the edge between ti and ti+1.

The second-order case is similar but slightly more
complex. Figure 3 shows the algorithm. The re-
cursive function needs to consider the directions of
the four adjacent edges of the classification target,
and maintain the directions of the two neighboring
edges to enumerate all possible edge directions. In
addition, the algorithm must rule out cycles in the
structure.

2.2 Decoding with the Easiest-First Strategy

We presented a polynomial time decoding algorithm
in the previous section. However, polynomial time
is not small enough in practice. Indeed, even the
Viterbi decoding of second-order markov models for
POS tagging is not practical unless some pruning
method is involved. The complexity of the bidirec-
tional decoding algorithm presented in the previous
section is, of course, larger than that because it enu-
merates all possible directions of the edges on top of
the enumeration of possible tag sequences.

In this section we present an alternative decod-

function bestScore()
{

return bestScoreSub(n+3, 〈end, end, end, end, end〉, 〈L, L, L, L〉, 〈L, L〉);
}

function bestScoreSub(i+2, 〈ti−2, ti−1, ti, ti+1ti+2〉, 〈d′

i−1, di−1, di, d
′

i+1〉, 〈di−2, d
′

i〉)
{

// to avoid cycles
if (di−1 = di)

if (di != d′

i) return 0;
// memorization
if (cached(i+2, 〈ti−2, ti−1, ti, ti+1ti+2〉, 〈d′

i−1, di−1, di, d
′

i+1〉, 〈di−2, d
′

i〉)
return cache(i+1, 〈ti−2, ti−1, ti, ti+1ti+2〉, 〈d′

i−1, di−1, di, d
′

i+1〉, 〈di−2, d
′

i〉);
// left boundary case
if (i = -1)

if (〈ti−2, ti−1, ti, ti+1, ti+2〉 = 〈start, start, start, start, start〉)
return 1;

else
return 0;

// recursive case
P = localClassification(i, 〈ti−2, ti−1, ti, ti+1, ti+2〉, 〈d′

i−1, di−1, di, d
′

i+1〉);
return maxd′

i−2

maxdi−3
maxti−3

P×

bestScoreSub(i+1, 〈ti−3, ti−2, ti−1, titi+1〉, 〈d′

i−2, di−2, di−1, d
′

i〉, 〈di−3, d
′

i−1〉);
}

Figure 3: Pseudocode for bidirectional inference for the second-order conditional markov models. d i is the
direction of the edge between ti and ti+1. d′

i
is the direction of the edge between ti−1 and ti+1. We omit the

localClassification function because it is the obvious extension of that for the first-order case.

ing method for bidirectional inference, which is ex-
tremely simple and efficient than full bidirectional
decoding.

The deterministic version of algorithm is given
below.

1. Find the easiest word to tag.

2. Tag the word.

3. Go back to 1. until all the words are tagged.

“the easiest word to tag” means the word with
which the classifier outputs the highest probability.
In finding the easiest word, we use the appropriate
local classifier according to the availability of the
neighboring tags. For example, if t3 was decided in
the first iteration, we use P (t2|t3o) to compute the
probability for tagging t2 in the next iteration (as in
Figure 1 (b)).

In experiments we extended this algorithm to
keep multiple hypotheses, which is essentially beam
search. We should mention that this easiest-first
strategy goes well with beam search because few al-
ternative hypotheses are generated in earlier stages
of decoding.

3 Maximum Entropy Classifier

For local classifiers, we used a maximum entropy
model which is a common choice for incorporating
various types of features for classification problems
in natural language processing (Berger et al., 1996).

Regularization is important in maximum entropy
modeling to avoid overfitting to the training data.
For that purpose, we used the maximum entropy
modeling with inequality constraints (Kazama and
Tsujii, 2003). The model gives equally good per-
formance as the maximum entropy modeling with
Gaussian priors (Chen and Rosenfeld, 1999), and
the size of the resulting model is much smaller than
that of Gaussian priors because most of the param-
eters become zero. This characteristic enables us to
easily handle the model data and carry out quick de-
coding, which is convenient when we repetitively
perform experiments. This modeling has one pa-
rameter to tune as in Gaussian prior modeling. The
parameter is called width factor. We tuned this pa-
rameter using development data in each type of ex-
periments.

Current word wi & ti

Previous word wi−1 & ti

Next word wi+1 & ti

Bigram features wi−1, wi & ti

wi, wi+1 & ti

Previous tag ti−1 & ti

Tag two back ti−2 & ti

Next tag ti+1 & ti

Tag two ahead ti+2 & ti

Tag Bigrams ti−2, ti−1 & ti

ti−1, ti+1 & ti

ti+1, ti+2 & ti

Tag Trigrams ti−2, ti−1, ti+1 & ti

ti−1, ti+1, ti+2 & ti

Tag 4-grams ti−2, ti−1, ti+1, ti+2 & ti

Tag/Word ti−1, wi & ti

combination ti+1, wi & ti

ti−1, ti+1, wi & ti

Prefix features prefixes of wi & ti

(up to length 10)
Suffix features suffixes of wi & ti

(up to length 10)
Lexical features whether wi has a hyphen & ti

whether wi has a number & ti

whether wi has a capital letter & ti

whether wi is all capital & ti

Table 1: Feature templates used in POS tagging ex-
periments. Tags are parts-of-speech. Tag features
are not necessarily used in all the models. For ex-
ample, “next tag” features cannot be used in left-to-
right models.

4 Experiments

To evaluate the bidirectional inference methods pre-
sented in the previous sections, we ran experiments
on POS tagging, base NP chunking and text chunk-
ing using standard English data sets.

Although achieving the best accuracy is not the
objective of this paper, we explored useful feature
sets and parameter setting using development data
in order to make the experiments realistic.

4.1 Part-of-speech tagging experiments

We split the Penn Treebank corpus (Marcus et al.,
1994) into training, development and test sets as in
(Collins, 2002). Sections 0-18 are used as the train-
ing set. Sections 19-21 are the development set, and
sections 22-24 are used as the test set. All the ex-
periments were carried out on the development set,
except for the final accuracy report using the best
setting.

For features, we basically adopted the feature set

Method Accuracy (%)

Left-to-right 96.92
Right-to-left 96.88
Dependency Networks 97.06
Easiest-first 97.14
Easiest-first (deterministic) 97.13
Full bidirectional 97.12

Table 2: POS tagging accuracy on the development
set.

Method Accuracy (%)

Dependency Net (2003) 97.24
Perceptron (2002) 97.11
SVM (2003) 97.05
TnT (2000) 96.48
Easiest-first 97.10

Table 3: POS tagging accuracy on the test set.

provided by (Toutanova et al., 2003) except for com-
plex features like crude company name detection
features because they are specific to the Penn Tree-
bank. Table 2 lists the feature templates used in our
experiments.

We tested unidirectional methods, which are iden-
tical to the popular left-to-right and right-to-left
MEMMs, and the bidirectional dependency network
(Toutanova et al., 2003) for comparison. Table 2
shows the accuracies of various decoding methods
on development data. All the models are second-
order. Bidirectional inference methods all outper-
formed unidirectional methods. Note that easiest-
first decoding methods achieve equally good perfor-
mance with full bidirectional inference. An example
of easiest-first decoding is given below:

The/DT/4 company/NN/7 had/VBD/11
sought/VBN/14 increases/NNS/13 total-
ing/VBG/12 $/$/2 80.3/CD/5 million/CD/8
,/,/1 or/CC/6 22/CD/9 %/NN/10 ././3

Each token represents Word/PoS/DecodingOrder.
Typically, punctuations are tagged first, and articles
tagged next. Proper nouns are usually tagged in later
stages because they are likely to be unknown words.

Since the easiest-first decoding method performed
best in the development set, we applied it to the
test data. The result is shown in Table 3. The ta-

ble also summarizes the accuracies achieved by sev-
eral other research efforts. The best accuracy is
97.24% achieved by bidirectional dependency net-
works (Toutanova et al., 2003) with rich features. A
perceptron algorithm gives 97.11% (Collins, 2002).
Gimenez and Marquez achieves 97.05% with sup-
port vector machines. This result indicates that bidi-
rectional inference with maximum entropy model-
ing can achieve comparable performance to other
state-of-the-art POS tagging methods.

4.2 Base NP Chunking Experiments

The task of NP chunking is to find non-overlapping,
non-recursive noun phrases in a sentence. There are
several ways of representing text chunks (Sang and
Veenstra, 1999). We tested the Start/End representa-
tion in addition to the popular IOB2 representation
because local classifiers can have fine-grained infor-
mation about the neighboring tags in the Start/End
representation.

For training and testing, we used the data pro-
vided by (Ramshaw and Marcus, 1995). The data
consists of sections 15-18 of the Wall Street Journal
corpus as training material and section 20 of the cor-
pus as test material. In addition, we constructed a
development set consisting of section 21 of the cor-
pus as done in (Collins, 2002).

To explore useful features we began with the fea-
ture set provided in (Collins, 2002), then found
POS-trigrams useful in testing taggers on the devel-
opment set. Table 4 lists the features used in chunk-
ing experiments.

Table 5 shows the F-scores of various decoding
methods on development data. As in POS tagging
experiments, bidirectional methods consistently out-
perform unidirectional methods. Bidirectional de-
pendency networks did not work well for this task.

Finally, we applied the second-order full bidirec-
tional decoding method to the test data and obtained
an F-score of 93.90. For base NP chunking, the best
f-score achieved by a single classifier is 94.38 (Sha
and Pereira, 2003). They used a second-order con-
ditional random field and carried out rigorous pa-
rameter turning about Gaussian priors and the num-
ber of iterations for numerical optimization. Kudo
(2001) achieved an f-score of 94.22 by combining
many kernel support vector machines.

Current word wi & ti

Previous word wi−1 & ti

Word two back wi−2 & ti

Next word wi+1 & ti

Word two ahead wi+2 & ti

Bigram features wi−2, wi−1 & ti

wi−1, wi & ti

wi, wi+1 & ti

wi+1, wi+2 & ti

Current POS pi & ti

Previous POS pi−1 & ti

POS two back pi−2 & ti

Next POS pi+1 & ti

POS two ahead pi+2 & ti

Bigram POS features pi−2, pi−1 & ti

pi−1, pi & ti

pi, pi+1 & ti

pi+1, pi+2 & ti

Trigram POS features pi−2, pi−1, pi & ti

pi−1, pi, pi+1 & ti

pi, pi+1, pi+2 & ti

Previous tag ti−1 & ti

Tag two back ti−2 & ti

Next tag ti+1 & ti

Tag two ahead ti+2 & ti

Bigram tag features ti−2, ti−1 & ti

ti−1, ti+1 & ti

ti+1, ti+2 & ti

Table 4: Feature templates used in chunking experi-
ments.

Representation Method Order F-score
IOB2 Left-to-right 1 93.31

2 93.26
Right-to-left 1 93.29

2 93.29
Dep. Net 1 90.14

2 90.32
Easiest-first 1 93.42

2 93.52
Easiest-first 1 93.43
(deterministic) 2 93.54
Full Bidir. 1 93.48

2 93.60
Start/End Left-to-right 1 93.43

2 93.49
Right-to-left 1 93.29

2 93.24
Dep. Net 1 91.28

2 91.08
Easiest-first 1 93.89

2 93.77
Easiest-first 1 93.90
(deterministic) 2 93.77
Full Bidir. 1 93.97

2 94.04

Table 5: base NP chunking F-scores on the develop-
ment set.

Representation Method Order F-score
IOB2 Left-to-right 1 93.11

2 93.01
Right-to-left 1 92.87

2 92.87
Dep. Net 1 92.81

2 92.78
Easiest-first 1 93.11

2 93.32
Easiest-first 1 93.11
(deterministic) 2 93.33
Full Bidir. 1 93.21

2 93.18
Start/End Left-to-right 1 92.84

2 92.81
Right-to-left 1 92.87

2 92.82
Dep. Net 1 88.32

2 88.28
Easiest-first 1 93.15

2 93.13
Easiest-first 1 93.15
(deterministic) 2 93.14
Full Bidir. 1 93.39

2 93.30

Table 6: chunking F-scores on the development set.

4.3 Chunking Experiments

The task of chunking is to find all types of non-
recursive phrases in a sentence. For example, a text
chunker segments the sentence “He reckons the cur-
rent account deficit will narrow to only 1.8 billion in
September” into the following,

[NP He] [VP reckons] [NP the current account
deficit] [VP will narrow] [PP to] [NP only 1.8 bil-
lion] [PP in] [NP September] .

For training and testing, we used the data set pro-
vided for the CoNLL-2000 shared task. The training
set consists of section 15-18 of the WSJ corpus, and
the test set is section 20 of the corpus. In addition,
we made the development set from section 21 using
a Perl script 1.

Table 6 shows the results on the development set.
Again, bidirectional methods exhibit better perfor-
mance than unidirectional methods. The difference
is bigger with the Start/End representation.

Because the first-oder full bidirectional inference
method with start/end representation performed
best, we applied it to the test data. We obtained an F-
score of 93.70, which is better than the best F-score
(93.48) of the CoNLL-2000 shared task (Sang and

1provided in http://ilk.kub.nl/ sabine/chunklink/

Buchholz, 2000).
It is worth mentioning that the F-score for NP

recognition was 94.21, which was higher than
that achieved by conducting only NP chunking.
This suggests that providing rich information about
neighboring tags has a positive effect for achieving
good performance even if the task becomes more
complex.

5 Discussion

There are some reports that one can improve the per-
formance of unidirectional models by combining the
outputs of taggers with different decoding directions
with some kind of voting. Shen reported an 0.39%
accuracy improvement of supertagging with pair-
wise voting (2003). The biggest difference between
our approach and such voting methods is that the lo-
cal classifier in our bidirectional inference methods
can have rich information for decision.

As for the computational cost for training, our
methods require us to train 22n types of classifiers
when we adopt an nth order markov assumption. In
many cases a second-order model is sufficient be-
cause further increase of n has little impact on per-
formance. Thus the training typically takes four or
16 times as much time as it would take for training
a single classifier, which looks somewhat expensive.
However, because each type of a classifier can be
trained independently, the training can be performed
completely in parallel and run with the same amount
of memory as that for training a single classifier.
This advantage contrasts to the case for CRFs which
requires substantial amount of memory and compu-
tational cost if one tries to incorporate higher-order
features about tag sequences.

As for the tagging speed, our deterministic
easiest-first strategy can perform extremely fast de-
coding with almost no loss of accuracy. This is very
important for building practical taggers.

6 Conclusion

We have presented a bidirectional inference al-
gorithm for sequence labeling problems such as
POS tagging and text chunking. The algorithm
can enumerate all possible decomposition structures
and find the highest probability sequence together
with the corresponding decomposition structure in

polynomial time. We have also presented an ef-
ficient bidirectional inference algorithm based on
the easiest-first heuristics, which gives compara-
bly good performance to full bidirectional inference
with extremely less computational cost.

Experimental results of POS tagging, base NP
chunking and text chunking show that the proposed
bidirectional inference methods consistently outper-
form unidirectional inference methods and our bidi-
rectional MEMMs give comparative performance
achieved by state-of-the-art learning algorithms in-
cluding kernel support vector machines.

A natural extension of this work is to replace the
maximum entropy classifier, which was used as lo-
cal classifiers, with other machine learning algo-
rithms. Support vector machines with appropriate
kernels is a good candidate because they have sur-
prisingly high generalization capacity as a single
classifier. In our modeling, however, the local clas-
sifiers should output probabilities in order to per-
form full bidirectional inference. Since SVMs do
not provide probabilities, we might need some de-
vice to convert their outputs to probabilities as done
in (Zhou, 2004).

References

Adam L. Berger, Stephen A. Della Pietra, and Vincent
J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22(1):39–71.

Thorsten Brants. 2000. TnT – a statistical part-of-speech
tagger. In Proceedings of the 6th Applied NLP Con-
ference (ANLP).

Stanley F. Chen and Ronald Rosenfeld. 1999. A gaus-
sian prior for smoothing maximum entropy models.
Technical Report CMUCS -99-108, Carnegie Mellon
University.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
EMNLP 2002, pages 1–8.

Jesus Gimenez and Lluis Marquez. 2003. Fast and accu-
rate part-of-speech tagging: The SVM approach revis-
ited. In Proceedings of RANLP 2003, pages 158–165.

Jun’ichi Kazama and Jun’ichi Tsujii. 2003. Evaluation
and extension of maximum entropy models with in-
equality constraints. In Proceedings of EMNLP 2003.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with
support vector machines. In Proceedings of NAACL
2001.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of ICML 2001, pages 282–289.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics, 19(2):313–330.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In David
Yarovsky and Kenneth Church, editors, Proceedings
of the Third Workshop on Very Large Corpora, pages
82–94, Somerset, New Jersey. Association for Compu-
tational Linguistics.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. In-
troduction to the conll-2000 shared task: Chunking.
In Proceedings of CoNLL-2000 and LLL-2000, pages
127–132.

Erik F. Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting text chunks. In Proceedings of EACL 1999,
pages 173–179.

Fei Sha and Fernando Pereira. 2003. Shallow pars-
ing with conditional random fields. In Proceedings of
HLT-NAACL 2003.

Libin Shen and Aravind K. Joshi. 2003. A SNoW based
Supertagger with Application to NP Chunking. In
Proceedings of ACL 2003, pages 505–512.

Kristina Toutanova, Dan Klein, Christopher Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of HLT-NAACL 2003, pages 252–259.

Zhou. 2004. Recognizing names in biomedical texts us-
ing hidden markov and svm plus sigmoid. In Proceed-
ings of the COLING 2004 Workshop on Natural Lan-
guage Processing in Biomedicine and its Applications.

