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Hypothesis generation, a crucial initial step for making
scientific discoveries, relies on prior knowledge, experi-
ence, and intuition. Chance connections made between
seemingly distinct subareas sometimes turn out to be
fruitful. The goal in text mining is to assist in this process
by automatically discovering a small set of interesting
hypotheses from a suitable text collection. In this report,
we present open and closed text mining algorithms that
are built within the discovery framework established by
Swanson and Smalheiser. Our algorithms represent top-
ics using metadata profiles. When applied to MEDLINE,
these are MeSH based profiles. We present experiments
that demonstrate the effectiveness of our algorithms.
Specifically, our algorithms successfully generate
ranked term lists where the key terms representing
novel relationships between topics are ranked high.

Introduction

It is well understood that biomedical knowledge is grow-
ing at an astounding pace. This creates an enormous chal-
lenge for scientists trying to keep pace with developments in
their field. At the same time, these vast collections of
publications offer an excellent opportunity for text mining,
i.e., the automatic discovery of knowledge. Text mining is
similar to data mining (Agrawal & Srikant, 1994; Fayyad &
Uthurusamy, 1996; Piatetsky-Shapiro & Frawley, 1991) in
its goal. But instead of mining a collection of well-struc-
tured data, text mining operates off text collections that are
at best semi-structured. In both cases, the knowledge dis-
covered is essentially a set of propositions or hypotheses
that require further study and verification. Text mining has
attracted the attention of many researchers (e.g., Andrade &
Valencia, 1998; Feldman et al., 1997; Gordon & Lindsay,
1996; Hahn and Schnattinger, 1997; Hearst, 1999; Hris-
tovski et al., 2001; Lent et al., 1997; Masys et al., 2001;
Smalheiser & Swanson, 1996a,b; Srinivasan, 2001, Swan-
son, 1986, 1988; Swanson et al., 2001; Weeber et al., 2000,

2001), including those in biomedicine. A recent article in
Nature (Blagosklonny & Pardee, 2002) referring to text
mining as conceptual biology speaks to its legitimacy as a
field that fuels hypothesis-driven biomedical explorations.
Examples of recent text-mining applications include auto-
matically identifying viruses that may be used as bioweap-
ons (Swanson et al., 2001), proposing therapeutic uses for
thalidomide (Weeber et al., 2003), and finding functional
connections between genes (Chaussabel & Sher, 2002;
Shatkay et al., 2000).

Our goal in this report is to propose and evaluate text-
mining algorithms designed for hypothesis discovery. We
follow the discovery framework initiated by Swanson in the
mid 1980s. His aim was to process MEDLINE in particular
ways and generate interesting hypotheses concerning spe-
cific diseases and health problems. Given two topics that are
bibliographically disconnected areas of specialization,
Swanson explored potential linkages via intermediate topics
or specializations. Over the past two decades and in collab-
oration with Smalheiser, Swanson proposed several inter-
esting hypotheses (Swanson, 1986, 1988; Swanson & Smal-
heiser, 1997; Swanson et al., 2001; Smalheiser & Swanson,
1996a,b), that were later validated by bioscientists. Since
their pioneering contributions, this kind of knowledge dis-
covery work has attracted the attention of other researchers
(Gordon & Lindsay, 1996; Lindsay & Gordon, 1999, Wee-
ber et al., 2000, 2001) besides us.

Swanson and Smalheiser’s discovery method may be
viewed as having two dimensions. Given a particular topic
of interest the first is about identifying interesting related
concepts and the second is about exploring the particulars of
the relationships. Thus, given a disease X as a starting point,
the first dimension is about identifying concepts related to X
such as a particular drug Y. In the second dimension, the
nature of their relationship is explored: is Y likely to treat X
or is it likely to aggravate X or does some other kind of
relationship potentially hold between them? The emphasis
is on novelty, discovering new Y concepts and/or postulat-
ing new relationships between X and Y. We refer to these as
dimensions since a given knowledge discovery procedure
may intertwine them in complex ways.
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Our algorithms concentrate on the first dimension, i.e.,
on identifying interesting concepts. (We handle the second
dimension as do the others, through manual analysis of the
literature.) Our motivation is twofold. First, previous efforts
within the Swanson and Smalheiser discovery framework
primarily use the free-text portions of MEDLINE (Gordon
& Lindsay, 1996; Lindsay & Gordon, 1999, Weeber et al.,
2000, 2001) with MeSH (Medical Subject Headings)1, the
metadata applied to MEDLINE records, having at best a
secondary role. Thus, we would like to determine the effec-
tiveness of a procedure that almost completely relies on
MeSH for the first dimension. Our second motivation is one
that we share with other researchers in that we would like to
reduce the amount of manual effort involved during the
discovery process. Specifically, we would like to automat-
ically return ranked lists of concepts to the user with inter-
esting concepts appearing at the top ranks.

Our algorithms operate by building MeSH-based profiles
from MEDLINE for topics. A profile is essentially a set of
MeSH terms that together represent the corresponding
topic. Different kinds of profiles may be constructed based
on the kinds of MeSH terms included. Overall, we assume
that as far as the first dimension is concerned, the user is
only required to specify (1) the initial topic(s) of interest and
(2) the kinds of profiles to generate. We, thus, evaluate our
algorithms under these conditions. Our long-term goal is to
build a suite of text mining tools that may be used by a
domain expert to explore a text collection for hypothesis
generation.

In this report, we present our text-mining algorithms as
well as experiments replicating several of the discoveries
made by Swanson and Smalheiser. We also study the effect
of varying the few parameters in our algorithms. We orga-
nize the paper as follows. Next we present details about our
profiles. Following this, we discuss hypothesis generation
and present our discovery algorithms. We then present
several discovery experiments. After a discussion of results
followed by an overview of related research in the next
section. We make our conclusions.

Profiles

Consider a topic such as Marfans syndrome, which is a
hereditary disease. The profile for this topic distilled from a
suitable text collection could identify, for example, terms
representing the genes, proteins, symptoms, drug treat-
ments, other diseases, and population groups associated
with the disease, i.e., “statistically related” to it. Although it
is not necessarily true, we assume that a statistical associ-
ation implies some semantic association. The profile for a
topic such as Jimmy Carter, extracted from a text collection
of Associated Press or Reuters newsfeeds, may include
terms representing the nations he visited, the Habitat for

Humanity projects he initiated, and the national elections
that he has observed.

We build topic profiles by first identifying a relevant
subset of documents from the text collection. We then
identify characteristic terms (single words and/or phrases)
from this subset and assess their relative importance as
descriptors of the topic. Terms may be extracted from the
free-text portions of the documents or/and from their meta-
data. In this reports we build profiles from MEDLINE using
just the MeSH metadata. MeSH terms are assigned to the
records by trained indexers at NLM who select from a
MeSH hierarchy of around 21,000 phrases. In essence, our
profiles are weighted vectors of MeSH terms as shown
below for a topic Ti.

Profile�Ti� � �wi,1m1, wi,2m2, . . . , wi,nmn� (1)

where mj represents a MeSH term, wi,j its weight, and there
are totally n terms in the MeSH vocabulary. (We discuss
weights shortly.)

Profiles may be as current as the text collection. Alter-
natively, profiles may be generated from collection subsets
corresponding to particular time periods. Such temporal
profiles may support trend analysis (Feldman & Dagan,
1995; Lent et al., 1997; Srinivasan & Wedemeyer, 2003).
Topics profiled may be as simple as those described by
single words (e.g., Tylenol) or a user may specify more
complex topics such as Calcium channel blockers and Alz-
heimers disease or Climbing expeditions on the K2. MED-
LINE topics may be in free-text format, i.e., not limited to
MeSH terms.

Employing Semantic Types in Profiles

Thus far, our profiles are simply vectors of weighted
MeSH terms. Now we describe how we are able to further
differentiate between the MeSH terms using semantic types.
Specifically, we exploit the fact that the MeSH vocabulary
has already been classified using 134 UMLS (Unified Med-
ical Language System)2 semantic types (NLM, 2002). Cell
Function, Sign or Symptom are two examples of semantic
types. Each MeSH term is assigned one or more semantic
types. For example, interferon type II falls within both
Immunologic Factor and Pharmacologic Substance seman-
tic types. More generally, semantic types represent “cate-
gories” that have been used to classify the MeSH metadata.
Figure 1 shows a brief example connecting a MEDLINE
record, MeSH, and the UMLS semantic types. Henceforth,
MeSH terms will be in lowercase while semantic types will
have the first character of each word capitalized. Both will
appear in italics.

Figure 2, which outlines our procedure for building pro-
files, shows how we involve these semantic types. Basically,
MeSH terms are separated by semantic type and term

1 http://www.nlm.nih.gov/mesh/meshhome.html 2 http://umlsks.nlm.nih.gov
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weights are computed within the context of a semantic type.
This results in a vector of MeSH term vectors, one for each
of the 134 UMLS semantic types. Thus,

Profile�Ti� � ��wi,1,1m1,1, wi,1,2m1,2, . . . ,�, . . . ,

�wi,134,1m134,1,wi,134,2m134,2, . . . ,�� (2)

where mx,y represents the MeSH term my that belongs to the
semantic type x and wi,x,y is the computed weight for mx,y.
Weights may be computed using any appropriate weighting
scheme (such as mutual information and log likelihood).
Below we use the TF*IDF (term frequency * inverse doc-
ument frequency) (Sparck Jones, 1972) weighting scheme
and then normalize the weights:

wi,x,y � vi,x,y/highest�vi,x,l�, (3)

where l � 1, . . . , r and vi,x,y � ni,x,y * log(N/nx,y). Here N
is the number of documents in the database, nx,y is the
number of documents in which mx,y occurs, and ni,x,y is the
number of retrieved documents for Ti in which mx,y occurs.
Normalization by highest (vi,x,l), the highest value for vi,x,y

observed for the MeSH terms with semantic type x, yields
weights that are in [0,1] within each semantic type. (Note
that there are r terms in the domain for semantic type x.)

Thus, a profile represents the relative importance, within
semantic types, of the different MeSH terms associated with
the topic’s document set. When appropriate, this profile may
be focussed or limited to a specific view, i.e., terms with
particular semantic types. For example, profiles of genes

FIG. 1. MEDLINE, MeSH, and UMLS semantic types.

FIG. 2. Procedure for generating TF*IDF weighted MeSH profiles.
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may be limited to functional semantic types such as Cell
Function and Pathologic Function. In a recent article (Srini-
vasan & Wedemeyer, 2003), we used profiles of diseases
limited to Geographic Area to explore the global distribu-
tion of research on various diseases. We then compared
such distributions with disease prevalence (distribution)
data. In this research, our goal is to employ MeSH-based
profiles for hypothesis discovery.

Example Profile

We use “Raynaud’s disease” to illustrate topic profiles.
Table 1 presents details of the search performed, counts
pertaining to the set of retrieved documents, and the profile.
Five top-ranked MeSH terms and their weights (equation 3)
are shown for a sample set of semantic types. Semantic
types with the most terms are also identified. For example,
Disease or Syndrome with 686 terms is the top-ranked type.
With respect to the distribution of weights, a threshold of
0.5 yields a profile of 316 terms, which is only 7% of the
original 4,419 terms. A threshold of 0.3 gives 413 (9.3%)
while a threshold of 0.7 gives 162 terms, which is less than
1% of the terms.

Discovering Hypotheses

Consider now a user who is interested in a particular
disease. Perhaps she wants to identify genes that may be
associated with this disease or dietary factors that influence
the disease in some way. The kinds of connections of
interest here are those that are both indirect and novel. The
discovery process initiated by Swanson explores such con-

nections and may be described using Figure 3. If we focus
first on Figure 3 (left) our user’s disease of interest is
represented by topic A. Links through intermediate terms
(B1, B2, . . . ) lead to the topics represented by terms C1,
C2, etc. By implication, there may be an interesting indirect
association between A and C1, A and C2, etc., via the
linking B terms. An association is novel (say between A and
Cx) if the two have been studied independently, i.e., their
literatures do not overlap. The goal in the discovery process
is to automatically identify such C level concepts given the
user’s starting A topic. Note that A can represent any topic
such as a disease or a gene or an enzyme or a pharmaco-
logical substance. Observe that the B terms have an impor-
tant role because these represent conceptual bridges be-
tween A and C.

Instead of an A to B to C discovery approach, a user may
start with a pair of topics A and C. While it may be that
some connections between them are already known, the aim
is to find new ones. Alternatively, it may be that no con-
nections are known and the aim is to determine if a mean-
ingful connection is possible. This time referring to Figure
3 (right), the bi-directional process starting from both A and
C looks for novel and meaningful interlinking B terms. This
is, in fact, that discovery pathway used by Swanson (1986)
for his first discovery. Specifically, he was able to identify
from MEDLINE mechanisms supporting his intuition that
Raynaud’s disease (A topic) may be treated with fish oils (C
topic). He found that Raynaud’s is aggravated by high blood
viscosity, platelet aggregability, and vasoconstriction and
these are reduced by fish oils. Weeber et al. (2001) in their
replication of some of the work by Swanson and Smal-
heiser, labeled the one directional procedure as an “open”

TABLE 1. Example profile. Topic: Raynaud’s disease (1960–1985).

Topic: Raynaud’s, limited to publications before 1986
PubMed search: Raynaud AND human AND 1960[DP]:1985[DP]
Number of documents retrieved: 2,733
Number of MeSH term instances in the document set: 52,271
Number of unique MeSH terms in the document set: 2,972
Profile: (top 5 terms for a few semantic types are shown below)

Semantic Type: Body Space or Junction: {finger joint (1.0), wrist joint (0.81), elbow joint (0.55), esophagogastric junction (0.33)}
Semantic Type: Cell: {neutrophils (1.0), blood platelets (0.78), erythrocytes (0.71), eosinophils (0.53), lymphocytes (0.5)}
Semantic Type: Cell Function: {platelet aggregation (1.0), platelet adhesiveness (0.56), neural conduction (0.5), erythrocyte aggregation (0.44)}
Semantic Type: Organ or Tissue Function: {regional blood flow (1.0), microcirculation (0.41), vasoconstriction (0.41), blood flow velocity (0.41),
hemodynamics (0.31)}
Semantic Type: Disease or Syndrome: {Raynaud’s disease (1.0), scleroderma, systemic (0.23), vascular diseases (0.09), occupational diseases
(0.077), cold (0.074)}
Semantic Type: Eicosanoid: {epoprostenol (1.0), prostaglandinse (0.65), prostaglandins (0.52), alprostadil (0.51), prostaglandinse, synthetic (0.15)}
Semantic Type: Organism Function: {aged (1.0), blood pressure (0.29), exertion (0.1), body temperature regulation (0.09), pregnancy (0.07),
menstruation (0.04)}
Semantic Type: Physiologic Function: {blood viscosity (1.0), blood circulation (0.63), pulse (0.38), vascular resistance (0.33), collateral circulation
(0.13)}

Number of unique MeSH terms in profile: 2,972
Total number of MeSH term entries in profile: 4,419 (a term can be in multiple semantic types)
Top 5 Semantic types ranked by number of terms: Disease or Syndrome (686), Pharmacologic Substance (359), Organic Chemical (291),

Laboratory Procedure (224), Body Part, Organ, or Organ Component (198)
Number of semantic types with at least 1 term in profile: 114 (out of 134 possible)

Note. Only the top 5 MeSH terms and weights are shown within select semantic types.
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discovery procedure and the bi-directional one as a “closed”
discovery process. We adopt the same labels henceforth.

The above description of the open and closed discovery
approaches is general enough that it may be applied to any
subject domain and not just those represented by the MED-
LINE database. The key is to instantiate the nodes, arcs, and
pathways in appropriate ways. In parallel research, we are
exploring their application to the accounting domain.

Several key aspects need to be considered when imple-
menting a system to support the open and closed discovery
processes. It is in the decisions made regarding these aspects
that the various studies may be distinguished. First, how are
the A topics for open (A and C for closed) to be repre-
sented? In our work, these are essentially MEDLINE
searches that one would normally submit to the PubMed
search system. Next, what are the intermediate B terms and
how are these identified? Similarly, how are the C terms
identified in the open process? For example, in our open
process B terms are MeSH terms identified from documents
retrieved from the A search. These are then filtered and
select B terms are retained. C terms, also MeSH terms, are
then identified from documents retrieved from these B term
searches. Instead of MeSH, others have explored extracting
phrases from the free-text portions of MEDLINE docu-
ments. Another decision that must be made is regarding
constraints that may be usefully applied to the processes.
For example, in the open process an explosive number of B
terms and then C terms can occur. We use term weights and
also the UMLS semantic types as constraints. Top-weighted

terms within specific semantic types are selected. Others
have generally followed a manual term selection phase
sometimes in conjunction with similar (but not identical)
term weight–based constraints.

Another important aspect of the discovery process is
regarding the nature of the relationship represented by the
arrows in the figures. This is where the domain expert has
the greatest influence over the process. Using background
knowledge, the expert is expected to filter out and select the
most promising paths for exploration. In this way, the expert
user is intimately involved with the discovery processes. We
support the user in this filtering step by providing mecha-
nisms to look at the literature underlying each arc. For
example, underlying the arrow between A and B2 in Figure
3 (left) is the set of documents retrieved by an intersection
of the A topic search and the B2 MeSH term. Others provide
similar support by displaying appropriate sentences from
the records. In summary, when we examine key details, we
see that text mining methods vary significantly although
designed with the common goal of enabling open and closed
discoveries.

Swanson and Smalheiser made most of their predictions
using the closed process. For example, Smalheiser & Swan-
son (1996a) predicted connections between indomethacin
and Alzheimer’s disease and Swanson (1988) predicted 11
different pathways between migraine and magnesium. The
challenge in their discovery process is that it requires con-
siderable manual processing. They start with independent
literature searches on the initiating A and C topics. Titles of

FIG. 3. Indirect concept links. (Figure adapted from Weeber et al., 2001.)
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retrieved documents (or terms extracted automatically from
them) are compared manually for interesting potential con-
nections between A and C. In the migraine (A) – magne-
sium (C) problem, Swanson observed, for example, that
magnesium deficits can lead to high levels of serotonin
release and substance P activity. He also observed from the
A literature that these same phenomena tend to aggravate
vascular effects of migraine. Thus, by reading the titles in
these two literatures and focussing on common terms such
as serotonin and substance P, Swanson was able to suggest
that magesium may have a role in migraine.

More recently, Swanson and Smalheiser created AR-
ROWSMITH (Swanson & Smalheiser, 1997), a system
available for public use on the WWW3 that is designed to
assist with the discovery process. Functions provided in-
clude those to automatically extract words and phrases that
are in common between the two A and C document sets.
Although the tool is extremely helpful, the process still
involves significant human intervention in sifting through
the list of terms and selecting appropriate terms.

To the best of our knowledge, Gordon and Lindsay were
the first researchers to try to replicate the Swanson discov-
eries. They explored both the Raynaud’s–fish oils problem
(Gordon & Lindsay, 1996) and the migraine-magnesium
problem (Lindsay & Gordon, 1999). Although their strategy
parallels the one used by Swanson and Smalheiser, there are
several distinctive features. They extract terms (bigrams and
trigrams) from the free-text portions of records and assess
their potential value using 4 different weighting schemes.
These are: term frequency, record frequency, term frequen-
cy* inverse document frequency where the latter is com-
puted against all of MEDLINE, and, finally, record fre-
quency in the domain normalized by record frequency in all
of MEDLINE. In their early work, they combine the evi-
dence obtained from the four weighting schemes to get a
final ranking of the terms while later they concentrate more
on using relative record frequency. Term selections from
ranked lists are done manually as are the design of search
strategies.

Weeber et al. (2000, 2001) in their knowledge discovery
research use MetaMap (Aronson & Rindflesch, 1997), an
NLP system, to translate the MEDLINE free-text (titles and
abstracts) to terms from the UMLS (Unified Medical Lan-
guage System) vocabulary. There are several advantages to
working with UMLS terms instead of ngrams extracted
from free-text. For example, given the domain of the
UMLS, terms are more likely to be biomedically relevant.
Their procedures also emphasize co-occurrence at the sen-
tence level and semantic filters. For example, referring to
the left part of Figure 3, given a particular A topic, B terms
selected are UMLS terms of particular semantic type(s) that
co-occur with terms representing topic A at the sentence
level. Although the semantic filters drastically limit the size

of the extracted term set, their discovery process still in-
volves significant manual analysis to group terms represent-
ing pathways and select terms for search strategies. It may
be observed that enforcing sentence-based co-occurrence
potentially constrains complexity of the input topic in the
discovery system.

As mentioned briefly before, we view the discovery
process as having two dimensions. The first is the identifi-
cation of key terms (find B then C in the open discovery
process, for example). The second is determining the nature
of the interlinking relationship (between A and B or be-
tween B and C). We call these dimensions and not stages
since a given discovery procedure may intertwine them in
complex ways. The second dimension at least benefits from,
if not depends upon, input from a domain expert. This
process may, of course, be assisted by automated mecha-
nisms as, for example, the convenient display of contextual
sentences (Weeber et al., 2001). Our focus in this research
is on dimension 1 and we wish to explore the value of
MeSH metadata for term selection. Specifically, our goal is
to provide a usefully ranked list of MeSH terms to the end
user. In the open discovery process, we wish to provide
ranked C terms and in the closed process ranked B terms.

Set in this research context, we now present our open and
closed algorithms. Our approach is similar to the research of
Lindsay and Gordon in that we use term weights that go
beyond simple frequency counts. It is similar to the efforts
of Weeber et al., in that we use UMLS-based semantic
filters. It is distinctive in that we use MeSH-based profiles.
Moreover, the user has only to specify the kinds of profiles
to build for the problem and set a parameter. Other charac-
teristics of our methods are identified later.

Open Discovery Algorithm

Figure 4 outlines the various steps our open discovery
algorithm. First, a MeSH profile is built for the initiating A
topic. MeSH terms in the profile have TF*IDF weights that
are normalized within each semantic type (equation 3). N B
MeSH terms are automatically selected from the user-spec-
ified ST-B vector components and their profiles are in turn
built in step 3. These are then merged in step 4 to form a
final combination profile. The combined weight of a term is
the sum of its weights in the individual B profiles. In the last
step, the C MeSH terms are limited to those representing
novel connections. A C MeSH term’s score is regarded as
the system-derived estimate of the potential value in its
association with the A topic. This score depends both on the
number of paths connecting back to A as well as the
strengths of these paths. The higher the score, the stronger
the recommendation made by the system. Thus, we rank C
MeSH terms within each semantic type by its combined
weight.

The input A topic may represent any topic of interest to
the user. The search that is conducted to build the A profile
may be any appropriate PubMed search and need not be
limited to the metadata field or indeed consist of any meta-

3 There are two implementations available on the Web, which are at
http://kiwi.uchicago.edu and http://arrowsmith.psych.uic.edu.
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data search terms. Thus, the A topic may be as complex as
required by the user. Our current strategy for searching is to
take the user’s input directly as search terms and add the
constraint of limiting the retrieved records to human studies.

If the user is uncertain about how to specify ST-B and
ST-C, these may be left unspecified. The default strategy is
to use all available semantic types. However, this default
strategy is likely to produce more ambiguous results than
the situation where the user actually specifies types of

interest. Also, the parameter N controls the width of the
expansion from B to C. Smaller values are likely to yield
more focussed output. We present experiments exploring
variations in N as well as in the semantic types.

Closed Discovery Algorithm

Figure 5 outlines the key steps in this algorithm. Profiles
are built for topics A and C in the usual way but limited to

FIG. 4. Open discovery algorithm: Outline of steps.

FIG. 5. Closed discovery algorithm: Outline of steps.
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the ST-B semantic types. By specifying ST-B, the user is in
essence suggesting that terms belonging to these semantic
types may potentially link A and C. Again, the A and C
topics may be as complex as the user requires. P top ranking
terms are retained for each semantic type. A profile of
MeSH terms in common between AP and CP is then built
that represents potentially novel connections. If the user is
unable to specify semantic types for selecting B terms, then
the default strategy will be to display rankings within all
available semantic types. Also, the constraint in step 4 may
be relaxed to offer the user the opportunity to explore
connections between A and C that may not be totally novel
in the literature.

Summary

Our open and closed discovery processes based on
MeSH profiles are guided by the semantic types identified
by the user. For certain kinds of problems, particular se-
mantic types may be most suitable. For instance, when
focussing on diseases, the functional semantic types appear
most relevant. Weeber et al. (2000, 2001) also use semantic
types to limit the terms considered. However, we also
display the output terms grouped and ranked within seman-
tic type while their ranking is across all filtered terms
independent of semantic types. Grouping by semantic type
is, in fact, built into our procedures. Lindsay and Gordon
differentiate between single words and higher order ngrams,
but make no attempt to partition terms semantically. We
believe that semantic groups will be more useful to the end
user since entire groups may be eliminated (or focussed
upon) with greater ease.

In general, our open and closed discovery algorithms are
designed as the foundation of our text mining system. Our
larger goal is to offer users, i.e., domain experts, a suite of
text mining tools that supports the exploration of MED-
LINE for the purpose of hypothesis generation. Our aim is
to automate the process as far as possible. However, user
input on several decisions will be key to successful knowl-
edge discovery.

Discovery Problems

Our goal is to assess the effectiveness of our open and
closed discovery algorithms. The question we ask is: can
our MeSH-based text mining methods identify interesting
hypotheses? In response, we test the ability of our methods
to replicate the various discoveries made by Swanson and
Smalheiser. Weeber et al. (2000, 2001) and Lindsay and
Gordon (1996, 1999) use the same empirical strategy to test
their discovery methods. As discussed previously, we focus
on the first dimension of the discovery process, i.e., on
identifying potentially interesting terms related to the input
topic(s). Designing strategies to assist in the second dimen-
sion, i.e., when identifying the specific nature of the rela-
tionship, is left for the future. Thus, in our simulation
experiments our aim is to see if we can automatically

identify the key terms that are at the core of each of the
Swanson and Smalheiser discoveries. For each discovery,
we conduct open or closed discovery runs as relevant to the
problem. As seen in Figures 4 and 5, our algorithms gen-
erate ranked lists of terms within each semantic type. We
measure performance by the ranks of the key MeSH terms
(C or B terms) within the appropriate semantic type for each
problem. For each problem that we replicate, we first sum-
marize the original discovery, then present our results and
then, where available, we also summarize experiments by
others.

Fish Oils and Raynaud’s Disease

The Raynaud’s discovery problem (Swanson, 1986) was
introduced earlier Swanson observed that Raynaud’s is ex-
acerbated by platelet aggregability, vasoconstriction, and
blood viscosity. He also observed from the literature that
fish oils reduce these phenomena. Putting these two obser-
vations together, he postulated that fish oils may be bene-
ficial for persons with Raynaud’s. This was later confirmed
(DiGiacomo et al., 1989). Although the original discovery
was made using the closed approach, we first apply the open
procedure (Gordon & Lindsay, 1996; Weeber et al., 2001)
and then the closed one (Weeber et al., 2001).

Open discovery. Raynaud’s disease as the A topic initiates
our open discovery algorithm (Fig. 4). The Raynaud’s
search is limited to human studies in the time period 1960 to
1985 (since the discovery was made in 1986). The
Raynaud’s profile is limited to a view defined by eight
functional semantic types (ST-B): Cell Function, Finding,
Molecular Function, Organism Function, Organ or Tissue
Function, Pathologic Function, Phenomenon or Process,
and Physiologic Function. N is set to 1 in order to keep the
discovery process focused. The selected (top ranking) B
terms in the order of the semantic types listed above are:
platelet aggregation; scleroderma, systemic; antibody spec-
ificity; aged; regional blood flow; thrombosis; recurrence,
and blood viscosity. Eight B profiles are built for these terms
from the same publication time period again constrained to
human studies. These are then merged to obtain the com-
bined C profile. Terms within each semantic type are ranked
by combined weight. Were a real user present, these ranked
lists would be shown to this user who may then select
particular semantic types to browse. Since Swanson was
interested in dietary factors, the appropriate semantic types
for the C terms would be Element, Ion, or Isotope; Vitamin;
and Lipid. Out of these three, the results are most interesting
for the Lipid type. Table 2 (R1 column) lists the ranks of the
top 20 terms that are novel in that they do not co-occur with
Raynaud’s within the pre-1986 MEDLINE database (step 5
of algorithm).

5,8,11,14,17-eicosapentaenoic acid is an important poly-
unsaturated fatty acid found in fish oils. It is also the active
ingredient in it. Thus, we see that the concept of fish oils is
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indicated within rank 7. The MeSH term fish oils itself is
ranked 19th. The other entries are also meaningful. For
example, lipoproteins have been studied in association with
fish oils as seen, for instance, in a 1985 document that
indicates a reduction of plasma lipids and lipoproteins by
marine fish oils.4 To complete the logical connection, oxi-
dation of low-density lipoproteins has been recently studied
in conjunction with Raynaud’s.5 Also, a 1999 study ex-
plores the effect of Probucol, an antioxidant that influences
low-density lipoprotein oxidation time lag, on Raynaud’s.6

We chose 8 functional semantic types to select the in-
termediate B terms. The assumption made is that the user
has an interest in factors that influence the functional as-
pects of the disease. These categories were also used in
replications of the same open discovery by Weeber et al.
(2000, 2001). We observe that after setting N�1 and ST-B
to the 8 functional semantic types, our procedure automat-
ically identifies the key term at a high rank. This is despite
the fact that some of the intermediate B terms such as
recurrence and aged are very general. The remaining col-
umns of Table 2 show rankings when we vary the param-
eters. R2 shows the ranks of terms when N�2. (Note that
ranks are shown only for those top 20 terms from R1.) For
most of the terms, the ranks are lowered. The key terms
5,8,11,14,17-eicosapentaenoic acid and Fish Oils are now
at ranks 17 and 28, respectively. The R3 column represents
ranks when using N � 1 but all 134 semantic types for
ST-B. Interestingly, although the ranks for 5,8,11,14,17-
eicosapentaenoic acid and Fish Oils drop to 27 and 46,
respectively, the ranks of the other terms do not change
dramatically. Guided by the ranks of the key terms, we
conclude that it is desirable to set N to 1 and define ST-B as
appropriate for the problem. Using the same criteria, it
appears that the R3 run is less effective than R2.

Weeber et al. (2001) in their UMLS concept-based ap-
proach identified from the Raynaud’s literature a set of 145

B concepts that belong to the same eight functional seman-
tic types. They manually analyzed these and identified three
groups of concepts representing three pathways. Each group
was then explored independently. (In contrast, we select the
highest ranked B MeSH terms and conduct searches auto-
matically.) For the two groups representing platelet aggre-
gation and blood viscosity, their best ranks obtained for
concepts relevant to fish oils were 50 and 20, respectively.
The third pathway for vascular reactivity did not produce
any reasonable ranks for fish oil concepts.

Gordon and Lindsay (1996) extracted single words and
bigrams from the free-text portions of the Raynaud’s liter-
ature. After manual analysis, they recognized that blood was
an important aspect. They then hand-selected a group of
relevant terms such as capillary abnormalities and digital
artery. Manual examination of the literature pertaining to
the intersection between these blood terms and Raynaud’s
led them to blood viscosity. Documents on blood viscosity
yielded several lists of terms from which they hand-picked
115 interesting terms. These were hand-picked from the top
250 terms obtained from each of their 4 term weighting
schemes applied independently to single-and multi-word
phrases. After eliminating terms from the set of 115 that
already occurred with Raynaud’s, they were left with 34
terms that contained both fish oils and eicosapentaenoic
acid. However, their ranks are not provided.

Closed discovery. Here we assume that the mechanisms of
the interaction are unknown and this is our discovery goal.
We know that Swanson identified platelet aggregation,
blood viscosity, and vasoconstriction as representing the
key connections. So the question here is can we rediscover
these as the connecting B MeSH terms? We use the proce-
dure in Figure 5 with Raynaud’s as topic A, and the key fish
oil concept: 5,8,11,14,17-Eicosapentaenoic Acid as topic C.

Profiles for A and C are created from the pre-1986
human studies and limited to the functional semantic types
(ST-B). Parameter P is set to 10 or 20 or 30 or 40 when
generating the combined profile. Table 3 showing the ranks
of key B MeSH terms indicates that all three pathways are

4 PMID: 3903563, a 1985 publication.

5 PMID: 7639801, a 1995 publication.

6 PMID: 10378706, a 1999 publication.

TABLE 2. Raynaud’s (open discovery).

MeSH term R1 R2 R3 MeSH term R1 R2 R3

Lipoproteins, LDL 1 1 1 Glycolipids 11 8 11
Oils 2 3 3 Chylomicrons 12 13 17
Lipoproteins, HDL 3 2 2 Linolenic acids 13 20 —
Lipoproteins, VLDL 4 5 5 Glycerides 14 13 —
Platelet activating factor 5 6 13 Lipid peroxides 15 10 8
Phosphatidylcholines 6 4 4 Butyrates 16 14 16
5,8,11,14,17-eicosapentaenoic 7 17 27 Sodium tetradecyl sulfate 17 25 18
Lysophosphatidylcholines 8 7 18 Cardiolipins 18 20 22
Gangliosides 9 12 9 Fish oils 19 28 46
Iodized oil 10 15 14 Liposomes 20 11 7

Note. R1: N � 1 and ST-B � 8 functional semantic types, R2: N � 2 and ST-B � 8 functional semantic types, R3: N � 1 and ST-B � all 134 semantic
types. Cell values are ranks. Terms listed are top 20 C MeSH Terms in semantic type Lipid for R1.
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represented within the top 3 ranks. We also observe that
changing the value for P has no effect on the ranks (We see
later that this is not always the case.)

We also repeated the P � 20 run, but with different
searches for the C topic. Searching on (5,8,11,14,17-Eico-
sapentaenoic Acid OR fish oils) yields slight changes: va-
soconstriction is ranked 4 and thromobosis is ranked 3. The
same results are obtained when C is represented by the
search (fish oils). This is not surprising since these variant
searches yield almost the same document set with the
former retrieving 7 additional documents for a total of 578
documents. In contrast, the original run with 5,8,11,14,17-
Eicosapentaenoic Acid as the search retrieves only 207
documents. Despite the differences in retrieved sets, the
conclusions are almost identical.

Exploring the same problem under the closed discovery
approach, Weeber et al. (2001) state that they found the
appropriate connecting concepts. Unfortunately, the ranks
of these intermediate concepts are not stated. Hence, we
cannot compare our results.

Migraine and Magnesium

Swanson (1988) studied the problem of finding connec-
tions between migraine and magnesium. In this case, he
studied both the titles and MeSH terms of MEDLINE
records. Using his method, he was able to propose 11
neglected paths that potentially connect migraine with mag-
nesium. Gallai et al. (1992), for example, were later able to
corroborate these connections. Swanson observed, for ex-
ample, that magnesium deficits can lead to high levels of
serotonin release and substance P activity. These, in turn,
tend to aggravate vascular effects of migraine.

We now consider the migraine-magnesium problem in
both open and closed discovery modes. One observation to
make here is that the open discovery is a bit forced since by
1988 there were already a few documents in which migraine
and magnesium co-occur. Thus, the two literatures are
slightly connected. Hence, when applying our open discov-
ery algorithm, we will have to modify step 5 in which we
remove concepts that are already co-occurring with the A
concept. Instead, we apply a threshold for the co-occurence
frequencies. Similar modifications were made by Lindsay
and Gordon (1999) and Weeber et al. (2001) in their repli-
cations of this discovery problem.

Open discovery. We start our open discovery process with
the pre-1988 MEDLINE subset and migraine as the A
concept. The same group of eight functional semantic types
from the Raynaud’s problem are used for selecting interme-
diate B concepts and we set N � 1. The top-ranking B
concepts chosen were: platelet aggregation in Cell Func-
tion; contraceptives in Finding; drug interactions in Mo-
lecular Function; aged in Organism Function; cerebrovas-
cular circulation in Organ or Tissue Function; cerebrovas-
cular disorders in Pathologic Function, recurrence in
Phenomenon or Process; and pulse in Physiologic Func-
tion.

These B concepts finally lead to a C profile that was
analysed for magnesium. Since there are already six docu-
ments in which migraine and magnesium co-occur within
the 1988 MEDLINE records, we keep 10 as our co-occur-
rence limit. We then find that magnesium is in rank 5 under
the metadata category Element, Ion or Isotope. We have
technetium, iodine radioisotopes, tritium, cobalt radioiso-
topes in ranks 1 through 4 before magnesium. Looking at
co-occurrences in MEDLINE records until 2003, we find
there are 45, 23, 8, 0, and 48 documents in which migraine
co-occurs with these concepts, respectively. Technetium and
iodine radioisotopes, for example, are involved in a tomog-
raphy procedure used in studying migraine.

Lindsay and Gordon (1999) started with searches repre-
senting the intermediate literatures and explored these path-
ways to determine if magnesium could be found. More
specifically, using just the relative frequency weighting
strategy, they formed the union of the top concepts from
different intermediate pathways. Deleting those that were
also found using all four statistics, they were left with 34
concepts that also included magnesium. Unfortunately, the
deletion process is not clearly justified. If we ignore this
deletion step, then magnesium is found within a ranking of
80 concepts. Their procedure is also not strictly an open
process since they start with the intermediate pathways.

Weeber et al. (2001) analysed MEDLINE for migraine
and extracted over 3,000 concepts that co-occurred with
migraine in sentences. The functional semantic types filter
reduced these to 504 concepts. Four pathways were recog-
nized and followed with further analysis. Concepts were
hand selected for these pathways. Analysing the literatures
of these pathways, they find that magnesium appears in the

TABLE 3. Terms representing pathways between Raynaud’s and fish oils.

MeSH term Semantic type

Term rank

P � 10 P � 20 P � 30 P � 40

Platelet aggregation Cell function 1 1 1 1
Platelet adhesiveness Cell function 2 2 2 2
Blood viscosity Physiologic function 1 1 1 1
Vasoconstriction Finding 1 1 1 1
Thrombosis Finding 2 2 2 2
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top 15% of the ranked lists of C concepts for 3 of the
pathways. The actual ranks appear to be between 10 and 42.

The previous research indicates that finding magnesium
when starting from migraine is a challenging problem. De-
spite this, we see that our open discovery process is able to
successfully rank magnesium high (rank � 5). Moreover, it
does so automatically after N and semantic types for ST-B
are specified. Repeating the same experiment with N � 2
and keeping everything else the same yields a rank of 12 for
magnesium. Interestingly, keeping N � 1 but using all
semantic types for ST-B yields a rank of 5 for magnesium.
Thus, the rank of this key term is preserved even when we
use all semantic types for selecting B terms. This is encour-
aging since at least in this particular case performance does
not depend upon specifying intermediate semantic types for
the open discovery process.

Closed discovery. For the closed procedure, we work with
migraine as the A topic and magnesium as the C topic and
limit the process to pre-1988 MEDLINE. We leave ST-B
unspecified and instead look for the ranks of key terms
within appropriate semantic types. (We adopt the same
strategy in the remaining closed discovery problems.) Table
4 identifies the 11 connections (such as vascular mecha-
nisms) between migraine and magnesium that Swanson
proposed. If we consider the P � 20 column, we see that
eight of the 11 connections are visible using our method
within the top 6 ranks, with vascular mechanisms and pros-
taglandins being very well represented. In fact, the majority
of the MeSH terms under Eicosanoid are prostaglandins
some of which are shown in Table 4. Amongst the remain-
ing eicosanoids, we have, for example, arachidonic acids,
which is an unsaturated, essential fatty acid and a precursor

TABLE 4. Terms representing pathways between migraine and magnesium.

MeSH term Semantic type

Term rank

P � 10 P � 20 P � 30 P � 40

Vascular mechanisms
Membrane potentials Cell function 1 1 1 1
Biological transport Cell function 2 2 2 2
Cell membrane permeability Cell function 3 3 3 3
Action potentials Cell function 4 4 4 4
Vascular resistance Laboratory or test result 3 5 5 5

Spreading depression
Spreading cortical depression Laboratory or test result — 6 6 6
Depression Mental or Behavioral dysfunction — 4 4 5

Prostaglandins
Prostaglandins Eicosanoid 1 1 1 1
Prostaglandins E Eicosanoid 2 2 2 2
Arachidonic acids Eicosanoid — 3 3 3
Prostaglandins F Eicosanoid 3 4 4 4
Alprostadil Eicosanoid 4 5 5 5
Epoprostenol Eicosanoid 5 6 6 6

Serotonin
Serotonin Neuroreactive

Substance or biogenic amine 1 1 1 1
Platelet activity

Platelet aggregation Cell function — 6 6 6
Platelet aggregation Laboratory or test result 2 2 3 3
Platelet adhesiveness Cell function — 11 11 11

Calcium channel blockers
Calcium channel blockers Injury or poisoning — 3 4 4
Magnesium sulfate Inorganic chemical — 3 3 3

Type A personality
Anxiety Mental process 1 1 1 1
Stress Pathologic function 2 2 4 4
Personality Mental process — 2 4 4
Aggression Social behavior — 1 2 2

Inflammation
Edema Pathologic function — 2 6 9
Brain edema Pathologic function — — — 10
Inflammation Pathologic function — 11 10 15

Hypoxia
Anoxia Pathologic function — — 5 6

Epilepsy — — — —
Substance P

Substance P Neuroreactive Substance or biogenic amine — 18 19 20

Note. A dash implies that the term was not found.
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in the biosynthesis of prostaglandins. Additional observa-
tions may be of interest. A 1997 review7 states that abnor-
malities in catecholamines and endogenous opioids are part
of the biomechanisms involved in migraine. Interestingly, in
this pre-1988 analysis we have several cetecholamines
ranked high under Neuroreactive Substance or Biogenic
Amine (after serotonin). Catecholamines itself is at rank 6.
Particular catecholamines such as norepinephrine, epineph-
rine, and dopamine are at rank 2, 4, and 8, respectively.
There are also key connections between entries under dif-
ferent semantic types. For example, epoprostenol (rank 6) in
Eicosanoid is a prostaglandin, a powerful vasodilator, and it
inhibits platelet aggregation.8 Unfortunately, one pathway
(epilepsy) was not identified by our algorithm. Also, a
second pathway substance P was ranked rather low.

Analysing the effect of parameter P, we see that although
the ranks obtained are slightly better using P � 10, several
key MeSH terms are not found. In fact, only 5 of the
pathways are represented. We note that by increasing the
parameter values beyond 20, we do not get significant
changes. Although the ranks change slightly for a few
terms, on the whole the ranks show remarkable stability.

In their closed discovery process, Weeber et al. (2001)
find 253 functional concepts that co-occur with both mi-
graine and magnesium. Examining this list, they find 6 of
the 11 pathways discovered between migraine and magne-
sium. Again, we are unable to compare our results since the
ranks of these pathway concepts are not provided.

Indomethacin and Alzheimer’s Disease

Smalheiser and Swanson (1996a) explored possible
mechanisms by which indomethacin, an anti-inflammatory
agent, might be expected to affect patients with Alzhei-
mer’s. This discovery was made using the MEDLINE lit-
erature limited to June 1995. They made several observa-
tions. For example, they state “Indomethacin decreases

plasma membrane fluidity in various cell types, whereas
membrane fluidity is elevated in some patients with AD.”
Membrane fluidity is the connecting concept in this state-
ment. Similarly they observed connections pertaining to
killer T-cell activity, M2-muscarinic receptors, lipid peroxi-
dation, and thyrotropin-releasing hormone.

Table 5 presents the results obtained from our closed
discovery process with Alzheimer’s disease and indometh-
acin as the A and C topics and their profiles derived from
pre-June 1995 and “human” studies in MEDLINE. Param-
eter P is varied as before. Again we see that P � 20 provides
the best results with all key terms but oxidative phosphor-
ylation ranked within the top 10 positions. Note that “T-
cell” translates to the MeSH term t-lymphocytes. The ranks
are somewhat better than reported if we decide to eliminate
very general terms from the top ranks. For example, we
have drug interactions; stimulation, chemical; and enzyme
activation as the top 3 concepts within Molecular Function
(not shown).

Interestingly, Smalheiser and Swanson also discov-
ered a possible adverse effect related to indomethacin
inhibition of acetylcholine in several systems such as
smooth muscles. We note that acetylcholine is ranked
second under Neuroreactive Substance or Biogenic
Amine. This example emphasizes the nature of text-based
knowledge discovery. Although the key MeSH terms
may be ranked high, it is left to the user to figure out that
indomethacin decreases membrane fluidity or that it in-
hibits lipid peroxidation. It is also left to the user to
differentiate between positive connections and those that
represent adverse effects (as in the case of acetylcholine).
We hope that by focusing on the top-ranked terms iden-
tified by our system, the user will have to peruse far
fewer documents in order to obtain the details regarding
the nature of the mechanism linking A and C.

One further observation may be made related to nitric
oxide, which is ranked first under Inorganic Chemical.
Several pre-1996 reports identified nitric oxide as important
for understanding Alzheimer’s. Nitric oxide synthase activ-
ity is elevated in brain microvessels in Alzheimer’s. Ele-
vated vascular production of NO may contribute to the

7 PMID:9100398, 1997.

8 PMID:6988063, 1980.

TABLE 5. Terms representing pathways between Alzheimers and indomethacin.

MeSH term Semantic type

Term rank

P � 10 P � 20 P � 30 P � 40

Signal transduction Molecular function 2 4 5 5
Lipid peroxidation Molecular function 4 6 7 7
Membrane fluidity Molecular function — 10 11 11
Oxidative phosphorylation Molecular function — 14 15 15
Receptors, muscarinic Receptor 3 5 5 5
T-lymphocytes Cell — 5 6 6
Lymphocytes Cell 4 7 8 8
Acetylcholine Neuroreactive sub. or biogenic amine 2 2 2 3
Thyrotropin Neuroreactive sub. or biogenic amine — 9 12 13

Note. A dash implies that the term was not found.
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susceptibility of neurons to injury and cell death in Alzhei-
mer’s.9 On the other side, we also find that indomethacin
prevents induction of nitric oxide synthase.10 Interestingly,
since 1995 the connection via nitric oxide has been studied
further. In 2000, for example, evidence was obtained show-
ing that indomethacin reduces interferon-gamma-induced
NO production. Accompanied by an inhibition of inducible
nitric oxide synthase mRNA expression.11 Also, a 2001
study further examines the neuroprotective characteristics
of indomethacin.12

Somatomedin C and Arginine

Swanson (1990) explored the relationship between so-
matomedin C (which we refer to as SmC), a growth-regu-
lating peptide believed to be mainly active in adults, and
arginine, an essential amino acid. His analysis of the two
isolated literatures revealed several connections between
them. We mention a few here and refer the reader to
Swanson’s report for the details.

Growth hormone (GH) and SmC influence each other
while arginine stimulates the secretion of GH. SmC levels
and GH secretion decline with age. Arginine is effective in
treating emaciation in older individuals and the general
decline of lean body mass. Its level is also reduced in
patients with protein-calorie malnutrition. SmC promotes
wound healing after burns, NK-cell activity, and immune
functions. Arginine does the same.

Our closed discovery process on the pre-1990 literature
on human studies brings up quite a few top-ranked terms
related to cell growth, which is key to the aging process. As
Table 6 shows, these include for example cell division (rank

1) under Cell Function. Related to the notion of wounds we
have wounds and injuries (rank 3) under Injury or Poison-
ing. Although we don’t have entries for NK-cell (natural
killer cell) activity, we do have entries for its parent type
lymphocytes (rank 6) and related terms t-lymphocytes (rank
10) under Cell as well as lymphocyte transformation (rank
5) under Cell Function. Under Hormone, we have at rank 1
somatotropin (Growth Hormone) and somatostatin (rank 3).
Somatotropin, the growth hormone GH secreted by the
pituitary gland, is central to several of the connections found
by Swanson. Somatostatin is another hormone that inhibits
the release of growth hormone and so is also an important
aspect of the connections between SmC and Arginine. Other
relevant terms include body weight ranked 4 under Organ-
ism Attribute. Again we see that P � 20 offers the best
results.

Schizophrenia and Calcium-Independent
Phospholipase A2

The starting point for this problem addressed by Smal-
heiser and Swanson (1998) is a report by Ross et al. (1997),
which reported that levels of a calcium independent form of
PLA2 are elevated in the serum of schizophrenic patients.
The Ross et al. study established elevated PLA2 levels as a
part of the characteristics of schizophrenia regardless of
whether it is a cause or a consequence of the disease. It was
also independently suggested in other reports that chronic
oxidative stress may occur in schizophrenia. Smalheiser and
Swanson found another study by Kua et al. (1995) working
with rats intriguing in that they show that oxidative stress
causes an elevation of PLA2 levels in lung, liver, and heart.
The idea suggested by Smalheiser and Swanson was to
combine the methods in the Ross et al. and Kua et al. studies
to determine if oxidative stress also causes PLA2 levels in
rat serum to become elevated. Such efforts might lead to the
prediction that treating schizophrenia with antioxidants
should reverse the elevation of serum PLA2.

We conducted a closed discovery process with schizo-
phrenia as the A topic and calcium-independent PLA2 as

9 PMID:7743205, published in January 1995; PMID:7528015, pub-
lished in 1994.

10 PMID:7827327, published in 1994.

11 PMID:11080519, published in 2000.

12 PMID:11259508, published in 2001.

TABLE 6. Terms representing pathways between somatomedin C and arginine.

MeSH term Semantic type

Term rank

P � 10 P � 20 P � 30 P � 40

Lymphocytes Cell — 6 7 7
T-lymphocytes Cell — 10 13 13
Cell division Cell function 1 1 1 1
Cell differentiation Cell function 3 3 3
Cell survival Cell function 4 4 4 4
Lymphocyte transformation Cell function 5 5 5 5
Somatotropin Hormone 1 1 1 1
Somatotropin-releasing hormone Hormone — — 4 5
Somatostatin Hormone 3 3 5 6
Wounds and injuries Injury or poisoning — 4 4 4
Body weight Organism attribute 4 4 4 4

Note. A dash implies that the term was not found.
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the C topic limited to the pre-1998 human studies literature.
We find the MeSH term oxidative stress ranked 3rd in the
semantic type Cell or Molecular Dysfunction when P � 20
or 30 or 40. The term was not identified for P � 10. This
MeSH term is the key connection between the two topics as
identified by Smalheiser and Swanson. We also find nerve
degeneration ranked 1 within the same semantic type for all
settings of P. A search on PubMed reveals many articles
discussing neurodegeneration in schizophrenia.13 There is
also some evidence indicating that enhanced PLA2 activity
at least in rats may be related to neuronal degeneration.14

This suggests that nerve degeneration could perhaps also
have been identified as a connection between the A and C
topics.

Discussion

Several summary observations may be made over the 2
open and 5 closed discovery problems addressed in this
study. First, as expected the open problems are more chal-
lenging than the closed ones. However, our procedure was
able to rank the key MeSH terms in the top 10 ranks within
the appropriate semantic types for both open problems. We
also observe that a more general version of the open pro-
cedure, one with a wider span (N � 2), degrades the ranks
for both open problems. A different notion of generality is
achieved by changing the semantic type selectors for the
intermediate B terms. Interestingly, when using all 134
semantic types for B terms, the rank degrades for the
Raynaud’s–fish oils problem but it remains stable for the
migraine-magnesium problem. Further research is required
to better understand conditions responsible for these differ-
ences.

Our closed discovery algorithm has some very stable
properties. Changing the value of parameter P beyond 20
does not significantly impact performance. Rankings for
most key terms remain steady. In certain cases, higher
values identify a few additional important terms. For exam-
ple, in the migraine-magnesium problem, the hypoxia con-
nection is only visible with P � 30 at least.

We now look at the number of ranked terms identified by
each of our closed discovery processes. These are given in

Table 7. Cell values indicate total number of terms in the set
shown to the user after duplicate terms have been removed.
Duplicate instances occur when a term has multiple seman-
tic types. The column labels, F, R, and S represent varying
conditions that will be defined shortly. But first we observe
that, as expected, set size increases under all conditions with
increasing P. We now focus our analysis on the row for P
� 20. Columns labeled F, for full set, show set sizes when
B terms in all 134 semantic types are displayed to the user.
Size ranges from 170 to 654 (average: 445; average devia-
tion: 181). Since these are fairly large sets from a user’s
perspective, ranking terms within semantic type is impor-
tant. Columns labeled R, for reduced, depict set size after
automatically removing 43 semantic types that seem obvi-
ously unrelated to these kinds of discovery problems. Ex-
amples of removed semantic types are: Educational Activ-
ity, Health Care Related Organization, and Biomedical
Occupation or Discipline. For semantic types that are re-
tained, we do not fine tune the terms contained using stop
words, since these are likely to be problem specific. Under
the reduced conditions, size ranges from 114 to 417 (aver-
age: 301; average deviation: 110). This represents a reduc-
tion of 21 to 36% (average: 31%) compared to the F sets.
Columns labeled S, for select, represent set size when the
semantic types are limited to those that actually contain the
interesting terms. For example, in the Raynaud’s problem,
the 14 terms are from the union of Cell Function, Physio-
logic Function, and Finding terms (see Table 3). This col-
umn depicts a size range of 4 to 101 (average: 45; average
deviation: 28). Compared to the F set, S represents a reduc-
tion of 82 to 99% (average: 91%). This analysis yields two
observations. First, it is important to get input from the user
on the semantic types of interest. Second, it is important to
rank terms within semantic type. As shown before, most of
our terms are ranked within the top 10 ranks of a semantic
type.

We conclude that it is best to use a conservative open
procedure with the minimal width of N � 1. For the closed
procedure, we recommend P � 20 unless the user is better
served with the smallest possible set of terms, in which case
we recommend P � 10. These observations are made within
the constraints of our experiments.

It is not easy to compare our results with those of
previous replications since, as pointed out in the summary,
our ranking strategies are different. We normalize term
weights within each semantic type and these types define

13 PMID:8637950, published in 1995; PMID:9278190, published in
1997.

14 PMID:9436653, published in 1997.

TABLE 7. Closed discovery set sizes.

P

Migraine Raynaud’s Somatomedin Indomethacin Schizophrenia

F R S F R S F R S F R S F R S

10 303 174 41 123 80 10 337 217 21 370 216 21 166 127 2
20 571 365 101 170 114 14 563 397 52 654 417 52 269 212 4
30 777 504 147 191 135 17 701 510 76 907 587 76 370 303 4
40 931 615 184 200 145 17 798 592 91 1131 750 98 417 346 4
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independent term groups. In contrast, the other researchers
offer a single ranking of all terms without any semantic
groupings. Our user may select or eliminate semantic
groups for further study with relative ease (possibly by
looking at the top few terms in each group), whereas in the
other approaches, the task of grouping the terms, if desired,
is left to the user. Thus, terms belonging to more interesting
semantic groups may be ranked below terms of less inter-
esting groups. In general, our term rankings are consistently
better than the previous results. However, we are unable to
predict the ranks the others would have achieved had they
also grouped their output by semantic type. There are other
differences in our approaches. For example, in the open
process given the user’s preference regarding semantic
types, we select B terms and build their profiles automati-
cally. Given the same set of semantic type preferences,
Weeber et al. (2000, 2001) manually select terms for search-
ing. Similar manual decisions are made by Lindsay and
Gordon (1996, 1999).

Finally, with reference to our original question, we see
that text mining procedures built using only the MeSH
metadata field of MEDLINE are more effective than the
free-text-based methods explored by others. Moreover, our
results have been obtained without the use of stop words,
which in some of the other studies have included a few
thousand phrases. The other advantage is that we do not
have to deal with the challenge of correctly identifying
phrases from free-texts and then correctly mapping them to
MeSH or UMLS concepts. We have also not yet explored
the fact that MeSH terms when applied to MEDLINE are
classified into two groups, one more important than the
other. The former group, called major MeSH terms, are
marked with an asterisk. Also MeSH terms are often qual-
ified with special phrases called subheadings. These provide
further details on the particular aspect of the MeSH term
addressed in the document. Major MeSH terms and sub-
headings will be the subject of future research. One disad-
vantage in our approach is that we will only be able to
involve MEDLINE records in the text-mining process after
they have been indexed with MeSH. Thus, a time lag is
implied. Another aspect is that MeSH terms sometimes are
more general compared to the actual concepts that appear in
the free-text. Differences in granularity may become impor-
tant in the long run and will also be addressed in future
research.

Related Research

As stated in Blagosklonny and Pardee (2002), the era of
conceptual biology is now upon us. The exponentially in-
creasing amounts of published information and their com-
plexity create obstacles to efficient research. At the same
time, these vast resources offer an unparalleled opportunity
to support hypothesis-driven, experimental research in bi-
ology. By automatically analysing published information
and logically connecting concepts studied in seemingly
unrelated fields, one can generate ideas for further research.

Viewed in the reverse direction, one may also conduct
preliminary explorations of tentative hypotheses by looking
for supporting arguments in the published literature. Text
mining applied to the domain of biomedicine is conceptual
biology.

The research of Swanson and Smalheiser, Lindsay and
Gordon, and Weeber et al., referred to thus far, form the
basis of our research. More recently, Swanson et al. (2001)
have explored the problem of categorizing viruses as bio-
logical weapons. Their approach is a natural extension of
their previous research. Essentially, they use PubMed to
explore four different properties of viruses that could be
used as weapons. The properties pertain to virulence, air-
borne transmission, stability in air or aerosols, and trans-
mission by agents such as insects. For each property, they
conduct a PubMed search and then use ARROWSMITH to
examine 3 property pairs (with virulence always one mem-
ber of a pair). For each property pair, ARROWSMITH
yields a list of virus MeSH headings that appear in both
document sets. Statistical tests indicate that the 3 virus lists
identify significant numbers of known virus weapons.

In new research, Weeber et al. (2003) use their open
discovery procedure to look for novel therapeutic uses for
thalidomide. A search on thalidomide initiates the process.
The free-text of retrieved documents are mapped into
UMLS concepts. The semantic type Immunologic Factor is
used to select terms that are shown to a specialist, ranked by
frequency. Selections made are used as B terms. Records
retrieved for these B terms are analyzed in the same way
and Disease or Syndrome terms extracted. After further
filters, a set of 100 diseases are examined by the subject
expert. Finally, four diseases are identified for which tha-
lidomide may have a therapeutic role. Acute pancreatitis
and chronic hepatitis C are two examples.

Other research exploring parallel text mining directions
includes the many reports exploiting co-occurrence of con-
cepts in the biomedical domain. Jenssen et al. (2001) gen-
erate a co-occurrence-based gene network called PubGene
from MEDLINE for 13,712 named human genes. Each of
PubGene’s 139,756 links is weighted by the number of
times the genes co-occur. Stapley and Benoit (2000) also
exploit co-occurrence to generate a gene-gene map from
MEDLINE documents containing the term Saccharomyces
cerevisiae. While Stephens et al. (2001) also use co-occur-
rence data to postulate gene interactions, they go beyond
simple frequency based counts. They also consider how
frequently the gene term (or its synonyms) occurs in the
document. Associations above a particular threshold are
analyzed further using a list of relationship words such as
activates and cleaves. Adamic et al. (2002) identify com-
munities of genes. Starting with a co-occurrence-based gene
network for a particular disease domain, communities are
identified by repeatedly removing edges of highest betwee-
ness (number of shortest paths traversing the edge). Apply-
ing this to the domain of colorectal cancer, they are able to
identify interesting hypotheses linking genes that were, for
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example, in the same community but had no edge between
them.

Another approach aiming toward identifying the func-
tional similarity between genes is that of Shatkay et al.
(2000). The authors first identify for each gene a kernel
document describing the gene’s function. This document is
then used to seek out similar documents from MEDLINE.
Overlap in document sets are then used to estimate func-
tional similarity between the source genes.

Association rules (Agrawal et al., 1993; Agrawal &
Srikant, 1994; Feldman & Hirsh, 1997; Piatetsky-Shapiro &
Frawley, 1991) are a dominant theme in text mining re-
search (Blake & Pratt, 2001; Feldman & Dagan, 1995;
Hristovski et al., 2001). These rules link pairs or larger
groups of concepts and are assigned support and confidence
values, scores that are commonly used in data-mining re-
search. An association rule such as concept A3 concept B
indicates that there may be a potentially interesting direc-
tional association from A to B. Typically, these are discov-
ered by exploiting the co-occurrence of A and B in the texts
being mined. Hristovski et al. (2001) use association rules
for literature-based knowledge discovery from MEDLINE.
Although they do not exactly replicate any of the Swanson
and Smalheiser discoveries, their overall approach derives
from the open discovery approach. Given a pair of rules A
3 B and B 3 C, they apply the transitive operation to
conclude that A 3 C. In their experiments, they use two
time-based subsets of MEDLINE, 1990–1995 defining an
old set and 1996–1999 defining a new set. Using associa-
tion rules built from the old set, they were able to predict the
majority of the novel A–C co-occurrences that were ob-
served in the new set. Unfortunately, only a small percent-
age of the predicted relations were observed in the new set.
For example, starting with Multiple Sclerosis as the A
concept, they predict 79% of the novel term co-occurrences
with this disease term in the new set but only 8% of their
predictions were realized.

Conclusions

In this research, we have proposed and studied algo-
rithms that focus on literature-based hypothesis generation
that are designed within the discovery framework estab-
lished by Swanson and Smalheiser. Our open and closed
algorithms focus on the first dimension of the discovery
processes, i.e., the identification and ranking of key terms.
We have tested these algorithms on 2 open and 5 closed
discoveries made by Smalheiser and Swanson. This is the
most comprehensive replication study of their discovery
problems to date. Where possible, our results were com-
pared with those of other studies replicating the same dis-
coveries. Comparisons indicate that our algorithms require
far less manual intervention while displaying the key terms
at very high ranks. Experiments were also conducted to
explore the impact of the different parameters. These indi-
cate that our algorithms are robust with generally predict-

able variations in performance over the parameter space.
Our specific conclusions are:

1. For all discovery problems tested, almost all key terms
are ranked within the top 10 positions under the appro-
priate semantic types. Thus, our term-weighting strate-
gies effectively differentiate between MeSH terms
within a semantic type. Also, after the user specifies the
semantic types of interest, our algorithms successfully
assign key terms to very high ranks. More generally, we
conclude through this replication study that our MeSH
profile–based discovery algorithms successfully dis-
cover key connections between topics. We have also
been able to suggest new connections for several topic
pairs.

2. In the open discovery process, the parameter N is best
left at 1, which suggests that narrow searches for inter-
mediate B terms are preferred.

3. In the open discovery process, it is important for prob-
lem-specific semantic types to be identified for selecting
B terms. However, we temper this conclusion since our
results on this aspect are not consistent. For example,
using all semantic types yielded no degradation in per-
formance for the migraine-magnesium problem. Further
research is needed to understand these results.

4. In the closed discovery problems, the best results are
achieved when parameter P is set to 20. Thus, when
combining the two topic profiles, it is sufficient to con-
sider only the top 20 ranked terms in each semantic type.
Limiting our attention to the top 10 terms results in
missing some key terms. Considering 20 or more terms
yields no additional returns.

5. In the closed discovery process, by removing 43 of the
134 semantic types (since they were very general), we
are able to trim the overall set of terms on average by
31% for the problems considered. However, if the user is
able to specify the relevant semantic types to view, then
the size of terms to consider drops on average by 91%.

6. Our study confirms that UMLS semantic types can be
exploited in the discovery process and in addition may be
used for organizing the results shown to the user. At
present, during discovery we consider all semantic types
corresponding to a MeSH term. Possibly, our algorithms
could be made even more precise if instead we could
automatically select the correct semantic type in the
context of a given MEDLINE record. We will consider
this “disambiguation” problem in the next phase of our
research.

In future research, in addition to the specific points raised
already, we plan explorations in several directions. First,
encouraged by these good results, we will move toward
exploring current discoveries in collaboration with biomed-
ical scientists. In order to support this, we are presently
creating a web-based front end for the user and involving
database technology at the back end of the system. Second,
we plan to explore methods by which one may assist a user
with the second dimension of the discovery process, i.e.,
when the user has to peruse the documents to figure out the
nature of the interaction underlying a suggested term rela-
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tionship. Third, we will look at methods by which select
free-text phrases may be used to augment the MeSH-based
topic profiles. This may be a solution to the problem poten-
tially caused by MeSH terms that are more general when
compared to the terms in the title and abstract. Finally, we
plan to identify and display semantic relationships between
the different groups of terms shown to the user. These may
be helpful to the user when analyzing output from the
system.
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