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Abstract

This paper presents a machine learning
approach to acronym generation. We for-
malize the generation process as a se-
quence labeling problem on the letters in
the definition (expanded form) so that a
variety of Markov modeling approaches
can be applied to this task. To con-
struct the data for training and testing, we
extracted acronym-definition pairs from
MEDLINE abstracts and manually anno-
tated each pair with positional informa-
tion about the letters in the acronym. We
have built an MEMM-based tagger using
this trainig data and evaluated the per-
formance of acronym generation. Ex-
perimental results show that our machine
learning method gives significantly bet-
ter performance than that achieved by the
popular heuristic rule for acronym genera-
tion and enables us to obtain multiple can-
didate acronyms together with their likeli-
hoods represented in probability values.

1 Introduction

One of the simplest way to generate acronyms from
definitions is to choose the letters at the beginning
of each word and capitalize them. However, there
are a lot of exceptions in the acronyms appearing
in biomedical documents. The followings are some
real examples of the definition-acronym pairs that
cannot be created with the simple heuristic method.

RNA polymerase (RNAP)
bioconcentration factor (BF)
melanoma cell adhesion molecule (Mel-CAM)
the xenoestrogen 4-tert-octylphenol (t-OP)

In this paper we present a machine learning ap-
proach to automatic generation of acronyms from
the given expanded forms. We formalize this prob-
lem as a sequence labeling task such as part-of-
speech tagging, chunking and other natural language
tagging tasks so that a common Markov modeling
approache can be applied to this task.

2 Acronym Generation as a Sequence
Labeling Problem

Given the definition (expanded form), the mecha-
nism of acronym generation can be regarded as the
task of selecting the appropriate action on each letter
in the definition.

Figure 1 illustrates an example, where the defini-
tion is “Duck interferon gamma” and the generated
acronym is “DuIFN-gamma”. The generation pro-
ceeds as follows:

The acronym generator outputs the first
two letters unchanged and skips the fol-
lowing three letters. Then the generator
capitalizes ‘i’ and skip the following four
letters...

By assuming that an acronym is made up of alpha-
numeric letters, spaces and hyphens, the actions be-
ing taken by the generator are classified into the fol-
lowing five classes.
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Figure 1: Acronym generation as a sequence labeling problem. The definition is “Duck interferon gamma”
and the acronym is “DuIFN-gamma”. Each letter in the acronym is generated from a letter in the definition
following the action for the letter.

• SKIP

The generator skips the letter.

• UPPER

If the target letter is uppercase, the generator
outputs the same letter. If the target letter is
lowercase, the generator coverts the letter into
the corresponding upper letter.

• LOWER

If the target letter is lowercase, the generator
outputs the same letter. If the target letter is
uppercase, the generator coverts the letter into
the corresponding lowercase letter.

• SPACE

The generator convert the letter into a space.

• HYPHEN

The generator convert the letter into a hyphen.

From the probabilistic modeling point of view,
this task is to find the sequence of actions t1...tn

that maximizes the following probability given the
observation o = o1...on

P (t1...tn|o). (1)

Observations are the letters in the definition and
various types of features derived from them. We de-
compose the probability in a left-to-right manner.

P (t1...tn|o) =
n∏

i=1

p(ti|t1...ti−1o). (2)

By making a first-order markov assumption, the
equation becomes

P (t1...tn|o) =
n∏

i=1

p(ti|ti−1o). (3)

If we have the trainig data containing a large num-
ber of definition-acronym pairs where the definition
is annotated with the labels for actions, we can es-
timate the parameters of this probabilstic model and
the best action sequence can be efficiently computed
by using a Viterbi decoding algorithm.



In this paper we adopt a maximum entropy model
(Berger et al., 1996) to estimate the local probabili-
ties p(ti|ti−1o) since it can incorporate diverse types
of features with reasonable computational cost. This
modeling, as a whole, is called Maximum Entropy
Markov Modeling (MEMM).

Regularization is important in maximum entropy
modeling to avoid overfitting to the training data.
For this purpose, we use the maximum entropy
modeling with inequality constraints (Kazama and
Tsujii, 2003). The model gives equally good per-
formance as the maximum entropy modeling with
Gaussian priors (Chen and Rosenfeld, 1999), and
the size of the resulting model is much smaller than
that of Gaussian priors because most of the param-
eters become zero. This characteristic enables us
to easily handle the model data and carry out quick
decoding, which is convenient when we repetitively
perform experiments. This modeling has one param-
eter to tune, which is called width factor. We set this
parameter to be 1.0 throughout the experiments.

3 The Data for Training and Testing

Since there is no training data available for the ma-
chine learning task described in the previous section,
we manually created the data. First, we extracted
definition-acronym pairs from MEDLINE abstracts
using the acronym acquisition method proposed by
(Schwartz and Hearst, 2003). The abstracts used for
constructing the data were randomly selected from
the abstracts published in the year of 2001. Dupli-
cated pairs were removed from the set.

In acquiring the pairs from the documents, we fo-
cused only on the pairs that appear in the form of

... expanded form (acronym) ...

We then manually removed misrecognized pairs,
and annotated each pair with positional informa-
tion. The positional information tells which letter
in the definition should correspond to a letter in the
acronym. Table 1 lists a portion of the data. For
example, the positional information in the first pair
indicates that the first letter ‘i’ in the definition cor-
respods to ‘I’ in the acronym, and the 12th letter ‘m’
corresponds to ‘M’.

With this positinal information, we can create the
training data for the sequence labeling task because

Positional
Definition Acronym Information

intestinal metaplasia IM 1, 12
lactate dehydrogenase LDH 1, 9, 11

cytokeratin CK 1, 5
cytokeratins CKs 1, 5, 12

Epstein-Barr virus EBV 1, 9, 14
30-base pairs bp 4, 9

in-situ hybridization ISH 1, 4, 9
: : :

Table 1: Curated data containing defintions, thier
acronyms and the positional information.

there is one-to-one correspondence between the se-
quence labels and the data with positional informa-
tion. In other words, we can determine the appro-
priate label for each letter in the definition by com-
paring the letter with the corresponding letter in the
acronym.

4 Features

Maximum entropy modeling allows us to incorpo-
rate diverse types of features. In this paper we use
the following types of features in local classification.
As an example, consider the situation where we are
going to determine the action at the letter ‘f’ in the
definition “Duck interferon gamma”.

• Letter unigram

The unigrams of neighboring letters. (e.g. ‘r’,
‘f’, ‘e’)

• Letter bigram

The bigrams of neighboring letters. (e.g. “er”,
“rf”, “fe”, “er”)

• Letter trigram

The trigrams of neighboring letters. (e.g. “ter”,
“erf”, “rfe”, “fer”, “ero”)

• Letter sequence

1. The sequence of letters ranging from the
beginning of the word to the target letter.
(e.g. “interf”)

2. The sequence of letters ranging from the
target letter to the end of the word. (e.g.
“feron”)



Rank Probability String
1 0.779 TBI
2 0.062 TUBI
3 0.028 TB
4 0.019 TbI
5 0.015 TB-I
6 0.009 tBI
7 0.008 TI
8 0.007 TBi
9 0.002 TUB
10 0.002 TUbI

ANSWER TBI

Table 2: Generated acronyms for “traumatic brain
injury”.

• Distance

1. The distance between the target letter and
the beginning of the word. (e.g. 6)

2. The distance between the target letter and
the tail of the word. (e.g. 5)

• Definition Length

The number of words in the definition (e.g. 3)

• Action history

The preceding action (e.g. SKIP)

5 Experiments

To evaluate the performance of the acronym gener-
ation method presented in the previous section, we
ran five-fold cross validation experiments using the
manually curated data set. The data set consists of
1,901 definition-acronym pairs.

For comparsion, we also tested the performance
of the popular heuristics for acronym generation in
which we choose the letters at the beginnings of each
word in the definition and capitalize them.

5.1 Features

To evalute how much individual types of features af-
fect the generation performance, we ran experiments
using different feature templates. Table 7 shows the
results. Overall, the results show that various types
of features have been successfully incorporated in
the MEMM modeling, leading to improved perfor-
mance.

Rank Probability String
1 0.423 ORF1
2 0.096 OR1
3 0.085 ORF-1
4 0.070 RF1
5 0.047 OrF1
6 0.036 OF1
7 0.025 ORf1
8 0.019 OR-1
9 0.016 R1

10 0.014 RF-1
ANSWER ORF-1

Table 3: Generated acronyms for “open reading
frame 1”.

Rank Probability String
1 0.163 RNA-P
2 0.147 RP
3 0.118 RNP
4 0.110 RNAP
5 0.064 RA-P
6 0.051 R-P
7 0.043 RAP
8 0.041 RN-P
9 0.034 RNA-PM
10 0.030 RPM

ANSWER RNAP

Table 4: Generated acronyms for “RNA poly-
merase”.

The performance achieved with only unigram fea-
tures is almost the same as that achieved by the
heuristic rule. Note that the features on the preivous
state improve the performance, which suggests that
our selection of the states in the Markov modeling is
a reasonable choice for this task.

5.2 Influential Features

In the maximum entropy modeling, you can grasp
influential features by examining the weights of fea-
tures1. Table ? shows some features that gained a
large weight as a result of training.

1Care has to be taken when you look at the weights of fea-
tures because overlapping of features affects the weights. For
example, if you define two identical features, the weights of the
individual features are halved.



Top 1 Top 5 Top 10
Feature Templates Coverage (%) Coverage (%) Coverage (%)
UNI 48.2 66.2 74.2
UNI, BI 50.1 71.2 78.3
UNI, BI, TRI 50.4 72.3 80.1
UNI, BI, TRI, HIS 50.6 73.6 81.2
UNI, BI, TRI, HIS, ATH 51.0 73.9 80.9
UNI, BI, TRI, HIS, ATH, LEN 53.9 74.6 81.3
UNI, BI, TRI, HIS, ATH, LEN, DIS 54.4 75.0 81.8
UNI, BI, TRI, HIS, ATH, LEN, DIS, SEQ 55.1 75.4 82.2

Table 7: Performance with Different Feature Sets.

Rank Probability String
1 0.405 MCPP
2 0.149 MCP
3 0.056 MCP
4 0.031 MPP
5 0.028 McPP
6 0.024 MchPP
7 0.020 MC
8 0.011 MP
9 0.011 mCPP

10 0.010 MCRPP
ANSWER mCPP

Table 5: Generated acronyms for “meta-
chlorophenylpiperazine”.

It is interesting that the accuracy achieved by the
heuristic rule is ??.

5.3 Learning Curve

5.4 Error Analysis

6 Discussion

7 Conclusion

We presetned a machine learning approach to
acronym generation. In this approach, we regarded
the generation process as a sequence labeling prob-
lem like POS tagging, and we manually created the
data for training and testing.

Experimental results using 1901 pairs, we
achieved a coverage (also accuracy) of 55.1%,
which is significantly bettern than that achieved by
the popular heuristics for acronym generation. The

Rank Coverage (%)
1 55.2
2 65.8
3 70.4
4 73.2
5 75.4
6 76.7
7 78.3
8 79.8
9 81.1

10 82.2
BASELINE 47.3

Table 6: Coverage achieved with the Top N Candi-
dates.
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Figure 2: Learning curve.



algorithm also enables us to have other acronym
candidates together with the probabilities represent-
ing their likelihood.

In this paper we did not consider the generation
patterns where the letters in the acronym appear in
a different order in the definition (e.g. ??? for ???).
Since about ??% of acronyms involve this types of
generation mechanism, we might further improve
performance by considering such permutation of let-
ters.

The leraning curve (Fig 2) suggests that we will
have improved performance if we have more train-
ing data. The size of the training data used in the
experiments is fairly small compared to those in
other sequence tagging tasks such POS tagging and
chunking. We plan to increase the size of the train-
ing data with a semi-automatic way that could re-
duce the human effort for annotation.
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