
Probabilistic Term Variant Generator for Biomedical Terms

Yoshimasa Tsuruoka†‡
†CREST, JST

(Japan Science and Technology Corporation)
Honcho 4-1-8, Kawaguchi-shi,

Saitama, 332-0012, Japan

tsuruoka@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii‡†
‡Department of Computer Science,

University of Tokyo
Hongo 7-3-1, Bunkyo-ku,
Tokyo, 113-0033, Japan

tsujii@is.s.u-tokyo.ac.jp

ABSTRACT
This paper presents an algorithm to generate possible vari-
ants for biomedical terms. The algorithm gives each variant
its generation probability representing its plausibility, which
is potentially useful for query and dictionary expansions.
The probabilistic rules for generating variants are automat-
ically learned from raw texts using an existing abbreviation
extraction technique. Our method, therefore, requires no
linguistic knowledge or labor-intensive natural language re-
source. We conducted an experiment using 83,142 MED-
LINE abstracts for rule induction and 18,930 abstracts for
testing. The results indicate that our method will signifi-
cantly increase the number of retrieved documents for long
biomedical terms.

Categories and Subject Descriptors
I.2.7 [Computing Methodologies]: Natural Language Pro-
cessing—Language Generation; H.3.1 [Information Sys-
tems]: Content Analysis and Indexing—Thesauruses

General Terms
Algorithms

Keywords
spelling variation, query expansion, dictionary expansion

1. INTRODUCTION
In the biomedical domain, technical terms including the

names of DNA, proteins, or tissues play a central role in
information retrieval. Spelling variations, however, make
keyword-based approaches less effective. For example, the
protein “NF-Kappa B” has many spelling variants such as
“NF Kappa B,” “NF kappa B,” “NF kappaB,” and “NFkap-
paB.” Consequently, a large section of the documents con-
taining this protein are not retrieved by using one of the
variants as a keyword.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’03, July 28–August 1, 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-646-3/03/0007 ...$5.00.

Dictionary-based biomedical term recognition is widely
used as the first step in information extraction from biomed-
ical documents [7, 11] because they can provide information
of “id”s of recognized terms unlike machine learning based
approaches [5, 6, 13]. However, one cannot achieve a high
recall in recognizing long terms by using exact string match-
ing algorithms due to the existence of spelling variations.

The problems with spelling variation in the area of infor-
mation retrieval have been extensively studied in the con-
text of query expansion and word conflation [2, 4, 8, 14, 15].
However, because the characteristics of the spelling varia-
tions for biomedical terms differ from those of common En-
glish words, we need to develop a different method for these
technical terms. Manually developing rules for spelling vari-
ation, however, requires a considerable amount of labor.

In addition, a lot of technical terms consisting of many
words are present in the biomedical domain. Suppose that
we have a term “nuclear factor of activated T cells” and a
rule that spaces and hyphens are replaceable. The number
of possible variants is at least 32 because the term has five
spaces. If we have another rule that the head of a word can
be capitalized, the number of possible variants becomes pro-
hibitively large. Although this problem can be alleviated by
using approximate string matching techniques [9], such elas-
tic matching methods require much greater computational
cost than exact matching techniques.

To solve these problems, we propose a completely unsu-
pervised method to generate spelling variants for biomedical
terms. Our method not only generates spelling variants but
also gives each variant a generation probability that repre-
sents the plausibility of the variant. Therefore, one does
not receive a prohibitive number of unnecessary variants by
setting the threshold of generation probability.

Our method needs no labor-intensive natural language re-
source, such as annotated corpora or thesauri. Our algo-
rithm learns the rules for variant generation from raw texts.
One can therefore easily adapt the generator to a new re-
search area as soon as new documents become available.
This advantage is very important because of the rapid ex-
pansion in biomedical research.

This paper is organized as follows. Section 2 describes the
algorithm for generating term variants and the method in
which it learns the probabilistic rules from raw texts. Sec-
tion 3 presents experimental results using MEDLINE ab-
stracts and generated variants for some biomedical terms.
Section 3 also gives experimental results of dictionary-based
protein name recognition using our variant generator. Sec-
tion 4 offers some concluding remarks.

T cell (1.0)

T- cell (0.5) T cells (0.2)

T- cells (0.1)

Substitute space w ith h y ph en

0.5

I n ser t ` s’ a t th e ta il

0.2

I n ser t ` s’ a t th e ta il

0.2

Figure 1: Probabilistic Term Variant Generation
(Figures inside parentheses are generation proba-
bilities, and figures along the edges are operation
probabilities)

2. PROBABILISTIC TERM VARIANT GEN-
ERATION

2.1 Motivation
Automatic query expansion is widely known as an effec-

tive technique for enhancing retrieval performance. Suppose
that one of the input terms for a retrieval system is “NF-
kappa B.” The term can be expanded as, “NF Kappa B”
or “nf kappa b.” Although the latter variant is possible,
the former is clearly more plausible. Therefore, retrieval re-
sults using the former variant should be preferred. If each
generated variant is associated with a numerical value rep-
resenting its plausibility, the retrieval system will be able to
reflect the plausibility of expanded terms when calculating
the ranks of the retrieved documents.

In this paper, we quantify the plausibility of a variant with
its generation probability.

2.2 Generation Probability
The generation probability of a variant is defined as the

probability that the variant can be generated through a se-
quence of operations. Each operation has an operation prob-
ability that represents how likely it will occur. Assuming
independence among the operations, the generation proba-
bility of a variant can be formalized in a recursive manner,

PX = PY × Pop, (1)

where PX is the generation probability of variant X, PY is
the generation probability of variant Y from which variant
X is generated, and Pop is the probability of the operation
by which Y is transformed into X.

Figure 1 shows an example of the generation process,
which can be represented as a tree. Each node represents
a generated variant and its probability. Each edge repre-
sents an operation and its probability. The root node corre-
sponds to the input term and the generation probability of
the root node is 1 by definition. We can obtain the variants
of an input term in order of their generation probabilities
by growing a tree in a best-first manner.

2.3 Operation Probability
To calculate the generation probabilities in our formaliza-

tion, we need the probability of each operation.

Table 1: Example of Obtained Rules

Left Target Right Operation
Context Context

c- R * Replace the target with ‘r’
- R * Replace the target with ‘r’
* R e Replace the target with ‘r’
* R el Replace the target with ‘r’
- R e Replace the target with ‘r’

c- R el Replace the target with ‘r’
* R * Replace the target with ‘r’

Asterisks indicate wild cards.

We used three types of operations for the generation mech-
anism:

• Substitution

Replace a character with another character.

• Deletion

Delete a character.

• Insertion

Insert a character.

These types of operations are motivated by the ones used
in edit distance, which is widely used for defining similarity
between two strings [9]. What makes our approach unique is
that we consider character-level contexts in which an opera-
tion occurs, and we estimate the probability of the operation
from a large number of pairs of spelling variations.

An operation probability is defined as the probability that
the operation will occur in a given context. First, we repre-
sent contexts using the neighboring characters of the opera-
tion. The following seven types of contexts are used in this
paper. They differ in relative position to the target and in
how much the context is specified:

• the target letter and the preceding two letters.

• the target letter and the preceding letter.

• the target letter and the following letter.

• the target letter and the following two letters.

• the target letter, the preceding letter and the following
letter.

• the target letter, the preceding two letters and the fol-
lowing two letters.

• the target letter only.

For an operation of a substitution or a deletion, the target
indicates a letter in the string. For an operation of an in-
sertion, the target indicates a gap between two letters. For
example, if the original string is “c-Rel” and the variant
is “c-rel.” The operation is a substitution of ‘R’ with ‘r.’
The rules obtained from this example are shown in Table 1.
They correspond to the seven types of aforementioned con-
text. The first rule indicates that if a letter ‘R’ is preceded
by a string “c-,” then one can replace the letter with ‘r.’

The next step is estimating the probability of each rule.
The probability should represent how likely the operation
will occur in a given context.

We estimate the probabilities from a large number of pairs
of spelling variants. In this paper, a pair of spelling variants
is defined as follows.

• The two strings (presumably) convey the same mean-
ing.

• The edit distance between the two strings is 1. In
other words, One string must be able to transform to
the other in one operation, and vice versa.

“c-Rel” and “c-rel” is an example of a pair of spelling vari-
ants. This example contains two operations, the substitu-
tion of ‘R’ with ‘r’ and the substitution of ‘r’ with ‘R.’ The
way to obtain such kinds of spelling variant pairs is described
later.

If we have a large set of pairs, we can estimate the oper-
ation probabilities by using the following equation.

Pop = P (operation|context) (2)

≈
f(context, operation) + 1

f(context) + 2
, (3)

where f(context) is the frequency of the occurrence of the
context, and f(context, operation) is the frequency of the
simultaneous occurrence of the context and operation in
the set of variant pairs. We adopted Laplace’s smoothing
(adding 1 to the numerator and 2 to the denominator).

2.4 Generation Algorithm
Once the rules and their operation probabilities are learned,

we can generate variants from an input term using those
rules.

The whole algorithm for variant generation is given below.
Note that V represents the set of generated terms.

1. Initialization

Add the input term to V .

2. Selection

Select a term and an operation to be applied to it so
that the generation probability of the generated term
will be the highest possible.

3. Generation

Generate a new term using the term and the operation
selected in Step 2. Then, add the generated term to
V .

4. Repeat

Go back to Step 2 until the termination condition is
satisfied.

In the generation step, the system applies the rule whose
context matches any part of the string. If multiple rules are
applicable, the rule that has the highest operation probabil-
ity is used.

Because this algorithm generates variants in order of their
generation probabilities, the termination condition can be
that the generation probability of the generated variant is
below the predefined threshold or that the number of gen-
erated variants exceeds the predefined threshold.

2.5 Acquiring Spelling Variations
To estimate the operation probabilities, we need a large

number of pairs of spelling variants. If we have an annotated
corpus that provides information of the semantic identity of
the technical terms, we can extract the pairs of spelling vari-
ations from them. However, since constructing such corpora
requires a large amount of labor and time, few such corpora
are currently available.

We therefore developed a method to bring together tech-
nical terms conveying the same meaning from raw texts.
Some research efforts have been done for such purposes [1,
3, 16].

In this paper, we used an abbreviation extraction tech-
nique to gather candidates of terms conveying the same
meaning.

An abbreviation is a shortened form of a word or group
of words. Here is an example of an abbreviation:

Alzheimer’s Disease (AD)

“AD” is an abbreviation of “Alzheimer’s Disease.” Through-
out this paper, we call the former short form and the latter
long form.

The merit of using abbreviation extraction is that long
forms corresponding to a same short form have relatively
high possibility to have the same meaning. Table 2 shows
some examples of obtained short forms and their correspond-
ing long forms using an abbreviation extraction method.

By extracting the long form pairs with an edit distance of
1 in each set corresponding to a short form, we can obtain
pairs of spelling variants such as “American”/“Americans”
and “Arachidonic acid”/“arachidonic acid.” As mentioned
in Section 2.3, we derive probabilistic operation rules using
these long form pairs.

For abbreviation extraction, we adopted a simple but ef-
fective method proposed by Schwartz and Hearst [12]. They
achieved 96% precision and 82% recall on a standard test
collection of biomedical documents.

The overview of their algorithm is given below.

1. Identifying short form and long form candidates

A word inside parentheses is regarded as a short form
candidate. The words preceding the parentheses are
regarded as a candidate for the long form correspond-
ing to the short form.

2. Identifying correct long forms

Starting from the end of both the short form and the
long form, move to right to left, trying to find the
shortest long form that matches the short form. Every
characters in the long form must be in the same order
as the characters in the short form.

For further details of the algorithm, see their work [12].

3. EXPERIMENT
We applied our method to the abstracts obtained from

MEDLINE, which is the largest database of biomedical liter-
ature maintained by the National Library of Medicine. The
set of abstracts used for estimating the operation probabili-
ties was obtained from the search results with the keywords
(MeSH terms) “Human” AND “Cell” and the publication
years 2000 and 2001. The number of abstracts was 83,142.

Table 3: Operation rules and their probabilities

Operation Probability Left Context Target Right Context Operation
0.957 * ’ end of string Delete the target
0.957 start of string I m Replace the target with ‘i’
0.947 * H yd Replace the target with ‘h’
0.938 * A de Replace the target with ‘a’
0.933 * U r Replace the target with ‘u’
0.929 * E xt Replace the target with ‘e’
0.929 * I nd Replace the target with ‘i’

: : : : :
0.875 * hyphen hyphen Delete the target
0.875 * hyphen ex Replace the target with a space
0.875 * A dr Replace the target with ‘a’
0.875 * A mi Replace the target with ‘a’

: : : : :
0.750 ph end of string Insert ‘y’
0.750 po os Insert a hyphen
0.750 re hyphen se Replace the target with a space
0.750 rl uk Insert ‘e’

: : : : :

An asterisk indicate a wild card

Table 2: Results of abbreviation extraction
Short form Long form

AA Alcoholic Anonymous
American
Americans

Arachidonic acid
arachidonic acid

amino acid
amino acids

anaemia
anemia

:
AD Alzheimer disease

Alzheimer’s Disease
Alzheimer’s disease
Atopic dermatitis
actinomycin D

:
Abeta amyloid beta peptide

amyloid beta-peptide
amyloid-beta peptide
amyloid-beta peptides

:
AI Apoptotic index

Apoptotic indexes
Apoptotic indices
apoptosis index
apoptotic index
apoptotic indices

:
: :

During the phase of extracting abbreviations, 5,775 short
forms and 24,281 long forms were acquired. Then the oper-
ation rules were learned from 13,147 pairs of long forms.

Table 3 shows a part of the obtained rules and their prob-
abilities. The rules totaled 14,158.

3.1 Generated Variants
The variants of some biomedical terms generated by our

algorithm are shown in Tables 4 to 9. The input terms of
the generator are listed in the first row of each table. The
rightmost columns in each table show the frequency of a
variant in another set of abstracts that was retrieved from
MEDLINE with the same keywords and the publication year
of 2002. These frequencies indicate how much the recall of
document retrieval is improved by the variant generation.

The first two input terms “NF-kappa B” and “transcrip-
tion factor” were selected from the GENIA corpus [10], which
is a semantically annotated biomedical corpus consisting
of 2,000 MEDLINE abstracts. Since the corpus has term
boundary information, we can count the frequency of every
technical term. These two terms are the two most frequent
technical terms in the corpus.

Table 4 shows the results for the input term “NF-kappa
B.” Because the frequency of the input term is 857 and that
of the variant “NF-kappaB” is 692, this variant will almost
doubles the recall.

Table 5 shows the result for the input term “transcription
factor.” In this case, the third variant will improve the recall
about 40%.

The results for the input term “antiinflammatory effect”
are shown in Table 6. The results correspond to the situ-
ation where the user inputs a term of minor spelling vari-
ation. In the first variant, the word “antiinflammatory” is
split into two words, “anti” and “inflammatory.” Note that
the frequency of the first variant is more than four times
that of the input term, this variant would significantly in-
crease the number of retrieved documents. The fifth variant
“anti-inflammatory effects” is also interesting. This variant
is generated by the second one. Its frequency indicates the
importance of the recursive generation in our algorithm.

Table 7 shows the results for the term “type I.” The sixth

Table 4: Generated term variants for “NF-kappa B”

Generation Generated String Frequency
Probability

1.0 (input term) NF-kappa B 857
0.417 NF-kappaB 692
0.417 nF-kappa B 0
0.337 Nf-kappa B 0
0.275 NF kappa B 25
0.226 NF-kappa b 0
0.177 NF-kppa B 0
0.174 nF-kappaB 0
0.168 Nf kappa B 0
0.168 Nfkappa B 0
0.140 nf-kappa B 0

: : :

Table 5: Generated term variants for “transcription
factor”

Generation Generated String Frequency
Probability

1.0 (input term) transcription factor 1020
0.235 Transcription factor 13
0.131 transcription factors 377
0.119 transcription-factor 0
0.090 trancription factor 0
0.031 Transcription factors 9
0.029 transcriPtion factor 0
0.028 Transcription-factor 0
0.028 transcription Factor 0
0.023 transcriptionfactor 0
0.021 Trancription factor 0

: :

variant “type 1” is interesting, where the character “I” is
replaced with a figure “1.” However, the results include a
harmful one. The eighth variant “type is” is clearly wrong
and its frequency indicate that it will cause false positives.

The results for the input term “tumour necrosis factor
alpha” are shown in Table 8. Notice that the transformation
to the American spelling variation of “tumour” is ranked at
the top. Because the input term includes a minor spelling
variation in this case, the generated variants significantly
improve the recall of the document retrieval.

The results for the input term “activated T cell” are shown
in Table 9. Notice that hyphens are inserted between ‘T’
and “cell” while they are not inserted between “activated”
and ‘T.’ In this case, the frequency of the input term and the
sum of the frequencies of the variants are almost equal. This
suggests a potential doubling of the retrieved documents.

3.2 Dictionary Expansion
Applications of our algorithm include dictionary expan-

sion, where each entry in a dictionary is expanded by a vari-
ant generator.

As an example of dictionary expansion, we conducted an
experiment of dictionary-based gene/protein name recogni-
tion using the GENIA corpus.

The dictionary was constructed from GenBank, which is
one of the largest gene databases containing 476,296 names

Table 6: Generated term variants for “antiinflam-
matory effect”

Generation Generated String Frequency
Probability

1.0 (input term) antiinflammatory effect 7
0.462 anti-inflammatory effect 33
0.393 antiinflammatory effects 6
0.356 Antiinflammatory effect 0
0.286 antiinflammatory-effect 0
0.181 anti-inflammatory effects 23
0.164 Anti-inflammatory effect 3
0.140 Antiinflammatory effects 0
0.132 anti-inflammatory-effect 0
0.127 anti inflammatory effect 0
0.112 antiinflammatory-effects 0

: : :

Table 7: Generated term variants for “type I”
Generation Generated String Frequency
Probability

1.0 (input term) type I 678
0.300 Type I 1082
0.299 type i 0
0.108 type-I 11
0.090 Type i 0
0.060 type Is 0
0.046 type 1 916
0.042 tyPe I 0
0.037 type is 47
0.032 Type-I 0
0.032 type-i 1

: : :

of genes and proteins.1 The names were filtered excluding
frequently occurring English words and entries consisting
only of numbers.

Expansions were done on terms whose length was equal
to or longer than five characters. The threshold of the gen-
eration probability was set to 0.1. The maximum number
of variants generated for each term was limited to 20.

Because we were not concerned with the absolute recogni-
tion performance in this paper, we simply used the longest
match algorithm for name recognition and no other tech-
niques to boost recognition performance.

Each recognition was counted correct if both the bound-
aries of the recognized term exactly matched the boundaries
of a semantic annotation in the corpus. The semantic an-
notations used in this experiments were of DNA, RNA, pro-
teins, and their descendants in the GENIA ontology [10].
When a term was recursively annotated, only the innermost
(shortest) annotation was considered.

The results are shown in Figures 2 and 3. The dotted
lines are the recognition performance using the original dic-
tionary, and the solid lines are the performance using the
expanded dictionary. The precisions and recalls were aver-
aged over five consecutive lengths.

Notice that the recalls for medium length terms (consist-
ing of from 6 to 10 letters) were almost doubled by the dic-
tionary expansion. The recalls for long terms (consisting of

1We used the gene symbol index file obtained from
ftp://ncbi.nlm.nih.gov/genbank/gbgen.idx.Z

Table 8: Generated term variants for “tumour
necrosis factor alpha”

Generation Generated String Frequency
Probability

1.0 (input term) tumour necrosis factor alpha 15
0.492 tumor necrosis factor alpha 126
0.356 tumour necrosis factor-alpha 30
0.235 Tumour necrosis factor alpha 2
0.175 tumor necrosis factor-alpha 182
0.115 Tumor necrosis factor alpha 8
0.102 tumour-necrosis factor alpha 0
0.099 tumour necrosis factoralpha 0
0.084 Tumour necrosis factor-alpha 4
0.075 tumour necrosis-factor alpha 0
0.075 tumor-necrosis factor alpha 0

: : :

Table 9: Generated term variants for “activated T
cell”

Generation Generated String Frequency
Probability

1.0 (input term) activated T cell 99
0.639 activated T cells 90
0.475 activated T-cell 10
0.469 Activated T cell 1
0.304 activated T-cells 5
0.299 Activated T cells 1
0.223 Activated T-cell 0
0.203 activated t cell 0
0.142 Activated T-cells 0
0.130 activated t cells 0
0.097 activated t-cell 0

: : :

more than 10 letters) were also improved. The fact that
the precisions were slightly improved indicates that our al-
gorithm generates few variants that cause false recognition.

4. CONCLUSION
An algorithm for generating possible variants for a given

biomedical term was presented. This algorithm can be used
for many applications regarding information extraction from
biomedical documents, such as query expansion or dictio-
nary expansion.

The learning process is done in a completely unsupervised
way. A large number of pairs of spelling variations are re-
trieved from raw texts using an existing abbreviation ex-
traction technique. The probabilistic rules for generating
the variants are learned from those pairs.

The experimental results of variant generation for some
long biomedical terms indicate that our method will signifi-
cantly improve the recall of document retrieval without the
burden of generating a large number of unnecessary variants.

The experimental results of the dictionary expansion us-
ing a gene/protein name dictionary and the GENIA corpus
show that our algorithm considerably improves the recall for
medium length biomedical terms without any loss of preci-
sion.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

P
re

ci
si

on

Term Length

expanded
original

Figure 2: Precision in dictionary-based protein
name recognition

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

R
ec

al
l

Term Length

expanded
original

Figure 3: Recall in dictionary-based protein name
recognition

4.1 Future work
Three types of operations are considered in this paper for

the mechanism of variant generation. There can be, how-
ever, other types of operations, such as word-insertion and
word-replacement. Our future work should encompass those
types of operations to improve the recall for long biomedical
terms.

We have applied our method to biomedical documents.
However, our method requires only that the technical terms
in the domain often be abbreviated so that one can collect
a large number of pairs of spelling variants by extracting
abbreviations. Studying the applicability of our method to
other domains is one of the future directions in our research.

5. REFERENCES
[1] M. Baroni, J. Matiasek, and H. Trost. Unsupervised

discovery of morphologically related words based on
orthographic and semantic similarity. In Proceedings
of the ACL-02 Workshop on Morphological and
Phonological Learning, pages 48–57, 2002.

[2] D. A. Hull. Stemming algorithms: A case study for
detailed evaluation. Journal of the American Society
of Information Science, 47(1):70–84, 1996.

[3] C. Jacquemin. Guessing morphology from terms and
corpora. In Research and Development in Information
Retrieval, pages 156–165, 1997.

[4] C. Jacquemin and E. Tzoukermann. NLP for term
variant extraction: Synergy between Morphology,
Lexicon and Syntax, pages 25–74. Kluwer Academic
Publishers, 1999.

[5] J. Kazama, T. Makino, Y. Ohta, and J. Tsujii. Tuning
support vector machines for biomedical named entity
recognition. In Proceedings of the ACL-02 Workshop
on Natural Language Processing in the Biomedical
Domain, 2002.

[6] J. D. Kim and J. Tsujii. Corpus-based approach to
biological entity recognition. In Proceedings of the
Second Meeting of the Special Interest Group on Text
Data Mining of ISMB 2002, 2002.

[7] M. Krauthammer, A. Rzhetsky, P. Morozov, and
C. Friedman. Using blast for identifying gene and
protein names in journal articles. GENE, 259:245–252,
2000.

[8] R. Krovetz. Viewing Morphology as an Inference
Process,. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
191–203, 1993.

[9] G. Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31–88,
2001.

[10] T. Ohta, Y. Tateisi, J.-D. Kim, and J. Tsujii. Genia
corpus: an annotated research abstract corpus in
molecular biology domain. In Proceedings of the
Human Language Technology Conference (HLT 2002),
2002.

[11] T. Ono, H. Hishigaki, A. Tanigami, and T. Takagi.
Automated extraction of information on
protein-protein interactions from the biological
literature. BIOINFORMATICS, 17(2):155–161, 2001.

[12] A. Schwartz and M. Hearst. A simple algorithm for
identifying abbreviation definitions in biomedical
texts,. In Proceedings of the Pacific Symposium on
Biocomputing (PSB 2003), 2003.

[13] K. Takeuchi and N. Collier. Use of support vector
machines in extended named entity recognition. In
Proceedings of the sixth Conference on Natural
Language Learning (CoNLL-2002), Roth, D. and van
den Bosch, A. (eds), pages 119–125, 2002.

[14] E. Tzoukermann, J. Klavans, and C. Jacquemin.
Effective use of natural language processing techniques
for automatic conflation of multi-word terms: The role
of derivational morphology, part of speech tagging,
and shallow parsing. In Research and Development in
Information Retrieval, pages 148–155, 1997.

[15] J. Xu and W. B. Croft. Corpus-based stemming using
cooccurrence of word variants. ACM Transactions on
Information Systems, 16(1):61–81, 1998.

[16] P. Zweigenbaum and N. Grabar. Automatic
acquisition of morphological knowledge for medical
language processing. Lecture Notes in Computer
Science, 1620:416–420, 1999.

