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Abstract

Classifiers are often required to out-
put not only a classification result
but also the probability of the clas-
sification. We focus on the decision
list classifier which has successfully
been applied to a wide variety of
NLP tasks. We propose methods
based on Bayesian learning to calcu-
late the reliability of contextual ev-
idences in decision lists, which en-
ables decision lists to output theo-
retically well-founded probabilities.
Experimental results obtained using
Senseval-1 data set show that our
methods enable decision lists to out-
put probabilities appropriately re-
flecting their reliabilities and im-
prove the classification performance
of the decision list algorithm.

1 Introduction

Classifiers are often required to output not
only a classification result but also the proba-
bility of the classification. Probabilities are
required when the overall decision is made
by combining outputs of multiple classifica-
tions. An example is using a Viterbi search
to combine classification results of tokens to
find the highest probability path for recogniz-
ing named entities (Borthwick et al., 1998).
In such cases, accuracy of output probabili-
ties is as important as classification accuracy
itself.

Among many supervised classifiers, we fo-
cus on the decision list classifier which has
been applied to a wide variety of NLP tasks

and has shown its effectiveness (Yarowsky,
1994; Hiroyuki, 2000; Usuro and others,
1999). In particular, a decision lists based
system is one of the best systems at the word
sense disambiguation competition Senseval-1
(Kilgarriff and Rosenzweig, 2000).

However, the majority of research efforts
using decision lists do not think much of the
output probabilities. We propose a method
based on Bayesian learning (Gelman et al.,
1995) to calculate the reliability of contextual
evidences in decision lists, which enables deci-
sion lists to output theoretically well-founded
probabilities.

In this paper, we explain and evaluate the
proposed method through application to word
sense disambiguation problems. Section 2
describes the decision list classifier for word
sense disambiguation problems. Section 3
and 4 present the method for estimating the
probabilities of contextual evidences based on
Bayesian learning and its improvement. Sec-
tion 5 describes experimental results using
Senseval-1 data set. Finally, advantages, lim-
itations and future research directions are dis-
cussed in Section 6.

2 The decision-list classifier

The decision list algorithm ranks classifica-
tion rules by their reliabilities. Classification
is made by using the most reliable rule that
can be applied to the given context.

Table 1 shows an example of a decision list
to disambiguate a polysemous word plant (A:
living, B: factory). The first rule means that
if the word right adjacent to the target is ‘life’
, the sense is A. The fourth rule means that if
the word ‘manufacturing’ appears within 2-10



Table 1: An example of a decision list
(Yarowsky, 1995)

reliability evidence sense

8.10 plant life A
7.58 manufacturing plant B
7.39 life (+2-10words) A
7.20 manufacturing (+2-10words) B
6.27 animal (+2-10words) A
4.70 equipment (+2-10words) B

B

4.39 employee (+2-10words)

words from the target, the sense is B.
In this paper, we use the following types of
contextual evidences.
e Window
Word found in £10 word window

e Word
Word immediately to the right
Target word itself
Word immediately to the left

e Pair of words
Pair of words at offsets -2 and -1
Pair of words at offsets -1 and +1
Pair of words at offsets +1 and +2

The rules are learned from a training cor-
pus. The majority of research efforts adopt
the following equation to calculate the relia-
bililty of each rule.

(reliability) = log (P(ﬁSj|Ei))’ (1)
where S; is a candidate class for the classifi-
cation task and F; is the contextual evidence.
However, to make the decision list algo-
rithm output probabilities, we adopt the fol-
lowing equation as the reliability of a rule.

(reliability) = P(S;|E;). (2)

It should be noted that Equation 1 is a
monotonous increasing function of P(S;|E;).
Since decision lists consider only order of

rules, Equation 1 and 2 make equivalent de-
cision lists when probabilities are ideally esti-
mated.

If we have a large number of samples con-
cerning the evidence, P(S;|E;) can be easily
estimated by maximum likelihood estimation
for Bernoulli trials:

f(Sjv EZ)
f(E:)
where f(FE;) is the number of samples in which

E; occurs and f(S;, E;) is the number of sam-
ples in which E; occurs together with S;.

P(Sj|Eq) = (3)

However, we do not always have sufficient
number of samples. For instance, if

f(S5, Ei) =1, f(Ei) =1, (4)

the probability becomes 1/1 = 100% by
Equation 3. This is undesirable estimation,
because the decision list gives this kind of
infrequent (hence not reliable) evidences the
highest priority.

This problem is one of the data sparseness
problems and is an essential problem of cor-
pus based methods. We tackle this problem
with Bayesian leaning in the next section.

3 Probability estimation based on
Bayesian learning

We propose a method based on Bayesian
learning for estimating the probability of a
rule.

At first, we regard the probability 8 =
P(S;|E;) as a stochastic variable. The ob-
jective is to estimate the expectation value of
0.

Under Bayesian learning, the posterior dis-
tribution is given by:

R 6)
__rorme o
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where D is the data we have observed. Since
the data D can be regarded as Bernoulli trials
in this case, the conditional distribution is:



P(D|§) = (:)eku —onko (1)

For simplicity, we denote f(S;, E;) by k and
f(E;) by n. Then,

P(0)0%(1 — )n=F
Jy P(0)6%(1 — 0)n—kdo

To calculate this posterior distribution, we
need to define the prior distribution P(#). At
this place, we use the uniform distribution
which indicates that we have no prior knowl-
edge about the probability distribution of the
variable. Then,

P(0|D) = (8)

P(O) =1. 9)

The posterior distribution is:

P(0|D)
k(1 _ pyn—~k
6k (1 — 6) 10)
JEok(1 — 0)n—+dg
glk+1) 1(1 )(n+2 —(k+1)-1
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This probability distribution is called the
beta distribution and the expectation value is
given by:

k+1
El0] = . 12
=" (12)
Finally, the reliability of a rule is given by:
k+1 S, Ei)+1
(reliability) = 1 _ S5 B)+ (13)

n+2 fE) +2

This equation has a similar form to Equa-
tion 3. We can compute reliabilities in al-
most the same way as maximum likelihood
estimation except for using f(S5;, E;) + 1 and
f(E;) + 2 instead of f(S;, E;) and f(E;) re-
spectively.

Our experimental results in Section 5 show
that this estimation method enables decision
lists to output probabilities which indicate re-
liability of classifications. However, there are
still gaps between expected accuracies com-
puted by averaging output probabilities asso-
ciated with each classification and actual ac-
curacies obtained. Reasons suspected are the
followings.

e Global vs. history-conditional

Classification by a certain rule implies
that no earlier rules have not matched
the given context.  However, Equa-
tion 2 ignores this history-condition and
computes probabilities merely from the
global frequencies. If the contextual
evidence of the rule is independent of
those of the earlier rules, the history-
conditional probability would be the
same as the global probability. How-
ever, this is not the case in practice.
With regard to this problem, Yarowsky
computes probabilities via the interpola-
tion of the global and history-conditional
probabilities (Yarowsky, 2000).

e Training data vs. test data

If the statistical property of the train-
ing data is different from the property of
the test data, the actual precision suffers.
This is a fundamental problem of corpus-
based natural language processing.

e Prior distribution

We have assumed that the prior distribu-
tion is uniform. Suppose, however, that
there are five candidate classes and we
have no information about the distribu-
tion, the prior distribution should be the
distribution which has its peek around
0.2, while the uniform distribution is not
such a distribution. The unifrom distri-
bution is not always appropriate for the
prior distribution.

In this paper, we are not concerned with the
first two issues. We address the third issue in
the next section.

4 Prior distribution

Under Bayesian learning we can compute
posterior probability distribution more accu-
rately by using appropriate prior distribution.
The question is which probability distribution
appropriately reflects our prior knowldge.
Here we make an assumption that the rules
with a small number of examples have similar
probabilistic property to those with a large



number of examples. This assumption allows
us to form a prior distribution from the actual
probability values of the rules with a large
number of examples. The boxes in Figure 1
show examples of actual relative frequencies
of the probability values of the rules which
have more than 10 examples.

To make use of these observed probability
values as a prior distribution, we adopt the
beta distribution which can flexibly approxi-
mate various shapes of probability distribu-
tions by its two parameters. Furthermore,
the distribution is the ‘natural conjugate prior
distribution’ for Bernoulli trials, which en-
ables us to compute analytically the poste-
rior distribution without difficulty. The two
parameters are set in such a way that the ex-
pectation value and variance of the beta dis-
tribution are made equal to those of the ob-
served probability values!. The curves in Fig-
ure 1 represent the beta distributions deter-
mined in this way.

In order to take into account the differ-
ences of probabilistic properties among differ-
ent types of contextual evidences (Window,
Word, Pair of words), we separately conduct
the above procedure for each evidence type.

Adopting the beta distribution, the prior
distribution is represented by:

P©) = B(i b)

o1 -9t (14)
where B(a,b) is the beta function:
1
B(a,b) = / ge-D(1— -, (15)
0
Substituting this prior distribution into

Equation 8, we obtain the posterior distribu-
tion:

e(a—l—k—l)(l _ 9)(b+n—k—1)

P(0|D) = 1
(6D) B(a+k,b+n—k) (16)
The expectation value is given by:
a+k
Elf]=—F—. 17
9] a+b+n (17)

!This parameter estimation method is called ‘mo-
ment estimation’
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Figure 1: Examples of prior distribution for
each contextual type. The target word is
‘accident (n).” The boxes represent the his-
togram of the probability values. Each curve
represents the beta distribution which ap-
proximates the distribution of those proba-
bility values.



Table 2: Actual precisions and expected pre-
cisions for Senseval-1 data when the prior dis-
tributions is uniform

Table 3: Actual precisions and expected pre-
cisions for Senseval-1 data when the prior dis-
tribution is the beta distribution.

Actual Expected Actual Expected
Precision = Precision Precision  Precision
Word (Pos) (1) (2) (1) — ()] Word (Pos) (1) (2) (1) — ()]
accident (n) 83.9% 91.7% 7.8 accident (n) 89.9% 93.1% 3.2
amaze (v) 100.0%  99.0% 1.0 amaze (v) 100.0%  99.8% 0.2
band (p) 84.1% 90.0% 5.9 band (p) 87.4% 90.0% 2.6
behaviour (n) 94.6% 97.4% 2.7 behaviour (n) 94.6% 97.7% 3.1
bet (n) 45.1% 72.8% 27.8 bet (n) 50.5% 60.0% 9.5
bet (v) 70.7% 80.8% 10.1 bet (v) 76.7% 79.0% 2.3
bitter (p) 49.2% 71.4% 22.2 bitter (p) 51.1% 55.1% 4.0
bother (v) 78.5% 84.0% 5.5 bother (v) 78.0% 83.1% 5.1
brilliant (a) 47.6% 72.5% 24.9 brilliant (a) 49.3% 61.0% 11.7
bury (v) 49.3% 71.6% 224 bury (v) 49.3% 59.2% 10.0
calculate (v) 86.7% 89.3% 2.6 calculate (v) 86.7% 89.5% 2.8
consume (v) 42.6% 71.8% 29.1 consume (v) 42.1% 60.4% 18.3
derive (v) 54.4% 75.2% 20.8 derive (v) 64.1% 60.6% 3.5
excess (n) 81.7% 90.6% 8.9 excess (n) 81.2% 90.9% 9.7
float (n) 53.3% 75.2% 21.8 float (n) 56.0% 61.3% 5.3
float (v) 45.0% 72.7% 97.7 float (v) 42.8% 59.3% 16.5
floating (a) 59.6% 72.5% 13.0 floating (a) 61.7% 69.4% 7.7
generous (a) 49.3% 72.9% 23.5 generous (a) 46.7% 56.5% 9.8
giant () 96.9% 95.0% 1.9 giant (a) 96.9% 96.0% 0.9
giant (n) 79.7% 85.5% 5.9 giant (n) 79.7% 83.8% 4.2
invade (v) 46.9% 71.3% 24.4 invade (v) 50.2% 65.4% 15.1
knee (n) 70.9% 79.2% 8.3 knee (n) 72.9% 72.7% 0.2
modest (a) 66.3% 77.1% 10.8 modest (a) 66.3% 68.8% 2.5
onion (n) 84.6% 91.1% 6.5 onion (n) 84.6% 94.4% 9.8
promise (n) 74.3% 81.7% 7.4 promise (n) 74.3% 79.8% 5.4
promise (v) 88.4% 93.8% 5.4 promise (v) 92.9% 94.5% 1.7
sack (n) 81.7% 85.0% 3.3 sack (n) 85.4% 82.8% 2.6
sack (v) 97.8% 98.4% 0.6 sack (v) 97.8% 99.3% 1.5
sanction (p) 74.5% 82.1% 7.6 sanction (p) 77.7% 80.0% 2.3
scrap (n) 41.7% 80.3% 38.7 scrap (n) 45.5% 77.3% 31.8
scrap (v) 87.6% 89.4% 1.8 scrap (v) 87.6% 92.1% 4.5
seize (v) 60.2% 77.3% 17.1 seize (v) 64.5% 68.8% 4.3
shake (p) 61.2% 81.0% 19.7 shake (p) 61.2% 78.8% 17.6
shirt (n) 83.7% 87.4% 3.7 shirt (n) 82.6% 85.2% 2.6
slight (a) 94.0% 94.3% 0.3 slight (a) 94.0% 94.8% 0.8
wooden (a) 93.9% 97.0% 3.1 wooden (a) 93.9% 97.8% 3.9
Average 71.1% 83.3% 12.3 Average 72.7% 78.8% 6.6

Finally, the reliability of a rule is given by:

f(Sjin) +a

f(E)+a+b (18)

(reliability) =

5 Experiments

We evaluate our proposed method on
Senseval-1 data set which is publicly available
online 2. The data set contains 36 ‘trainable’
polysemous words (for which tagged training
data was available). No pre-processing such
as stemming, part-of-speech tagging, or pars-
ing has not been conducted.

*http://www.itri.brighton.ac.uk/events/senseval /

First, we show the results of the experi-
ments where the prior distribution is uniform.
Shown in Table 2 are the actual precisions,
the expected precisions and the gaps between
them. The expected precision is computed
by averaging output probabilities associated
with each classification. If each output prob-
ability ideally indicates ‘true’ probability of
the classification, the expected precision will
be almost equal to the actual precision. Thus,
the gaps indicate the goodness of the proba-
bility estimation. The smaller the gaps are,
the better the estimations are.



Table 4: Comparison of classification perfor-
mance

Average Precision

Log-likelihood ratio 71.1%
Thinning out 69.4%
Bayesian (uniform) 71.1%
Bayesian (beta) 72.7%

Table 3 shows the results of the experiments
where the prior distribution is the beta distri-
bution as we described in Section 4. Notice
that the average of the gaps has reduced al-
most by half. Furthermore, the overall clas-
sification performance (actual accuracies) has
improved.

The proposed methods are not attractive
if they deteriorate the classification perfor-
mance of the decision list algorithm. We con-
duct experiments to evaluate the classifica-
tion performance of our methods comparing
to some conventional methods. The follow-
ings are the conventional methods used in the
experiments.

e Log-likelihood ratio

Reliabilities are calculated by Equation
1. Then,

f (SJ ) EZ) + o )
f(_'sjin) +a/

(19)
To avoid zero-denominator, we add a
small constant « to the numerator and
denominator (Yarowsky, 1994), where «
is selected from 0.05, 0.1, 0.2, 0.4, 0.8, 1.6
and 3.2 to optimize classification perfor-
mance. In this experiment, the best « is
0.8.

(reliability) = log (

e Thinning out

Reliabilities are calculated by Equation
3. To avoid giving the highest priority
to the rules with infrequent evidences.
The rules which do not have more than
Nihreshold €vidences are thinned out. In
this experiment, the best n¢preshold i 3.

Table 4 shows the classification accura-
cies where the parameters of the conventional

methods are optimized for the data set. No-
tice that the proposed method with the uni-
form prior distribution achieves comparative
performance to Log-likelihood, despite the
fact that it does not require any parame-
ter tuning. The proposed method with beta
prior distribution achieves the best classifica-
tion performance?

6 Conclusion

To make the decision list algorithm output ac-
curate probabilities, we have proposed a prob-
ability estimation method based on Bayesian
learning that gives well-founded probability
estimations.

Experimental results obtained using
Senseval-1 data set show that Bayesian
learning with the uniform prior distribution
enables decision lists to output probabilities
reflecting their reliabilities.

We have also presented a method to make
use of prior distributions. The experimental
results show that this augmentation signifi-
cantly reduces the gaps between output prob-
abilities and ‘true’ probabilities. The results
also show that the classification performance
of the decision list algorithm is also improved.

The future direction of this study will be to
investigate the effectiveness of the proposed
methods with other applications than word
sense disambiguation problems.
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