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Abstract

After the accomplishment of human draft
sequence, more and more efforts are being
made in the mapping of the data-driven
patterns to background knowledge, hop-
ing to efficiently produce hypotheses out
of the flood of data. Here we propose a
framework of biomedical data and knowl-
edge that has a high adaptability to the
automated data interpretation. Then, we
show that biomedical databases with het-
erogeneous scopes and structures can be
converted to the format, and possible roles
of ontology of biomedical objects com-
bined with natural language processing
techniques. Lastly, we present applica-
tions of formatted biomedical knowledge
to scientific discovery.

1 Introduction

After the accomplishment of human draft genome
sequence (Lander, E. S. et al., 2001), systematic pre-
diction of gene functions (Marcotte et al., 1999) is
one of the major goals in biomedicine. Toward this
goal, high-throughput measurement of gene (pro-
tein) features such as expression profiles (Iyer, V.
R. et al., 99; Velculescu, V. E. et al., 1999; Hsiao,
L. L. et al., 2001; Su, 2001) and protein-protein in-
teractions (Ito, T. et al., 2001; Ho, Y. et al., 2002)
has become a trend, and data is generated at an un-
precedented rate. It is clear that hypothesis creation
on the roles played by genes with systematic and in-

tegrative approaches (Scherf, U. et al., 2000; Green-
baum, D. et al., 2001) to collected data is anticipated
as the next goal.

The first step toward that goal was the representa-
tion of measurement data, the extraction of global
patterns from the data (Eisen, M. B. et al., 1998;
Ge et al., 2001; Bussemaker et al., 2001; Rives and
Galitski, 2003), and the visualization of the results
(Gilbert et al., 2000). Here we summarize the mea-
surement data into only two formats. One is the ‘fea-
ture array’, or an array of features and their values
for a type of biological object, e.g. genes and cells,
and the matrix as a collection of the arrays. For ex-
ample, the structural database (Apweiler, R. et al.,
2001) is a collection of genes with features such
as protein families, domains, and functional sites.
Another example is the expression profiles data set,
which is a matrix of genes and tissues with each cell
representing relative or absolute abundance of cog-
nate transcripts. Combinations of two types of mea-
surement data by making the product of the matri-
ces can give a prediction of a new type of relation
(Scherf, U. et al., 2000). The other format is the
‘gene-gene correlation/similarity matrix’ represent-
ing the strength of relations in all-to-all gene pairs.
Some of the methods produce directly this type of
data; on the other hand, the gene ‘feature arrays’ can
be transformed to this type of data by calculating the
correlations between the feature values of all-to-all
gene pairs.

Now, more and more efforts are being made in
the second step, or mapping the data-driven patterns
to the integrated background knowledge e.g. bio-
chemistry, cell biology, pathology, and medicine.



A problem here is to allocate authentic features
to biological objects, and the efforts to work col-
laboratively to build controlled and classified vo-
cabularies (Ogata, H. et al., 1999; Ashburner, M.
et al., 2000) for molecular localization, actions,
and roles, and then to assign them to genes (Xie,
H., 2002; Camon, E. et al., 2003) are being pro-
moted. Some of the controlled vocabularies are
called ‘ontology’ because they have manually edited
relations representing e.g. ‘Is-a’ and ‘Part-of’ re-
lations, connecting the objects in a tree or net-
work structure. By extending the scope of biolog-
ical ontologies, e.g. relations between anatomical
structures and tissues constituting them as repre-
sented in TissueDB (http://tissuedb.ontology.ims.u-
tokyo.ac.jp), more diverse problems like matching
tissues between expression profiling platforms will
become easier.

We argue that there is another aspect of the in-
tegration problem: the format of data and knowl-
edge to be interrelated with each other. The net-
work representation of the relations between objects
is widely used, and an experiment (Jenssen et al.,
2001) extracted the networks between related genes
using the co-occurrence frequency of gene symbols
in MEDLINE articles. However, no study using
such representation has successfully combined data
and knowledge into a global view of a new type of
relations as presented in the combination of genome-
wide measurement data (Scherf, U. et al., 2000).
What we will propose as the common data format
will enable calculating the knowledge as well as the
genome-wide measurement data, and will integrate
the data and knowledge toward a discovery.

2 Grand Design

The databases we are planning to integrate are as
follows. Major human gene-centred databases (Ref-
Seq/Locuslink (Pruitt and Maglott, 2001), SWISS-
PROT (Boeckmann, B. et al., 2003)) will provide
structural features of the genes to be extracted with
sequence analysis as well as relations to other types
of objects (e.g. cells, tissues, and their activi-
ties) in the form of text-formatted comments. The
gene-centred databases for model organisms (Fly-
base (The FlyBase Consortium, 2003) for fruit flies)
will give information of conserved genes that may

also have an important role in human. The dis-
ease database (OMIM (Hamosh et al., 2002)) may
give a basis for molecular-based diagnosis combined
with measurement data, e.g. expression patterns.
The pathway database (KEGG (Ogata, H. et al.,
1999)) and Gene Ontology (Ashburner, M. et al.,
2000) will be used to enrich functional features of
genes, and major textbooks in biomedical sciences
will be used to anchor a variety of data and knowl-
edge. In addition, we will incorporate a data set
of 13,543 human gene expression profiles across
71 normal human tissues (H-invitational data set,
an international gene annotation conference held in
2002/8/25-2002/9/3) for integration with those types
of knowledge. One of the representational character-
istics of the data is the ‘tissue distribution pattern’
calculated as follows: 1,994 RNA sources in the
data set were classified into 10 practical tissue cat-
egories and the category-mean concentrations were
computed. We will also extract relationship as fol-
lows from the MEDLINE articles on PubMed: those
between diseases and their clinical manifestations
and those between genes and cell/tissue types.

We introduce appropriate representations of
knowledge that can be as computable as that of
data, and would work in the integration of data and
knowledge. The targets to which they will be ap-
plied include, but are not restricted to, the databases
listed above. As the studies on diagnostic reason-
ing (Joseph and Patel, 1990) clarified, experts and
novices differ in the way they conceive links be-
tween given information and between invoked ideas,
leading to different ability in generating and elimi-
nating alternative hypotheses. Therefore, we may
well define biomedical knowledge as recognition of
relations between biomedical terms. This definition
will justify the adoption of the second data format,
the ‘object-object correlation/similarity matrix’. We
may well adopt the first format, the ‘feature array’
to form the basis of the correlation matrix.

With those formats, various types of knowledge
buried in existing databases can be represented.
Some of the knowledge can be extracted with no
advanced processing (e.g. sequence elements an-
notated in the database, and reference to other
databases’ objects), and others need specific pro-
cessing (e.g. sequence elements yet to be anno-
tated in the database). However, most of the rela-



Figure 1: Representation and computation of data and knowledge. See ‘Grand Design’ section for details

tions are written in the text format with various lev-
els of abstraction. An example of the higher-level
abstraction is the statement like ‘SUBCELLULAR
LOCATION Secreted’, a part of Comment section
in SWISS-PROT, consisting of a feature (SUBCEL-
LULAR LOCATION) and the value (Secreted). In
this case, both the feature and the value are from a
controlled vocabulary. The OMIM Clinical Synop-
sis (CS) field is a feature for a phenotype having a
hierarchy consisting of sub-fields categorized by the
type of heredity, the affected organs, or the affected
systems (119 categories written in loosely controlled
terms, and can be merged to about 40 categories),
and under the sub-fields are about 22,000 leaf de-
scriptions for clinical manifestations. They are com-
posite phrase of medical terms, with about 18,000
descriptions appear only once, and the analysis of
the structure and the summarization of the descrip-
tions would be useful. An example of the lower-
level abstraction is ‘FUNCTION: it induces nerve
cells differentiation’, also taken seen in the Com-
ment section of SWISS-PROT. Very basic natural
language processing (NLP) would be necessary to
extract the possible feature value (‘nerve cells differ-
entiation’) for the feature (FUNCTION); moreover,
the feature value may not be included in a controlled
vocabulary, requiring matching of the meanings for
comparison. Lastly, the lowest-level abstraction is

the free text format including most of the OMIM
fields and MEDLINE articles.

To cope with the textual descriptions, we will
apply NLP resources as follows to the tasks:
vocabularies from Unified Medical Language
System (UMLS (Lindberg, 1990)) subsum-
ing International Classification of Diseases
(ICD) 10 (http://www.who.int/whosis/icd10/),
a disease classification; textbook index
terms; GENA (http://gena.ontology.ims.u-
tokyo.ac.jp/search/servlet/gena), a vocabulary
of gene names; Gene Ontology as one of the
controlled vocabularies of gene functions; and GE-
NIA (http://www-tsujii.is.u-tokyo.ac.jp/GENIA/),
a biomedical and linguistic tagged corpus, to test
rules to be applied to the extraction of relations
between objects. These vocabularies combined with
NLP techniques will extract the target objects, and
co-occurrence relations between features for an
object and the feature value, or between two types
of objects will be calculated; then, those relations
will be converted to either format: feature array or
object-object correlation matrix. Once the feature
arrays are calculated, they can be converted to the
object-object correlation matrix. For the calculation
of matrices, several sets of ontology will be neces-
sary to match the items in rows or columns between
the matrices. In addition to TissueDB, we may use



Gene Ontology to match terms representing gene
functions, and UMLS to match terms representing
diseases. All those processes are described in Figure
1.

3 Encoding

3.1 Disease vs Clinical Manifestations

We describe extracted relationships between dis-
eases and their symptoms (clinical manifestations)
from the MEDLINE database. In this study, we
adopt a simply assumption that the frequency of the
co-occurrence between disease names in titles and
symptom names in abstracts indicates their strength
of association.

We have conducted experiments using the whole
MEDLINE database as of August 2002 containing
about 12,000,000 abstracts. The dictionaries were
constructed from the UMLS Metathesaurus. The
disease and symptom name dictionary were con-
structed by gathering the terms having the semantice
type of “Disease or Syndrome” and “Sign or Symp-
tom” respectively. Since we adopt a simple longest
matching algorithm for term detection, Common
Engligh words such as “signs” and “other” were ex-
cluded from the dictinoaries to avoid false recogni-
tions.

The number of unique diseases that appeared in
the titles was 6,586 and that of unique symptoms
was 1,083. We can thus construct a 6,586 x 1,083
matrix from the extracted pairs. Each element in the
matrix represents the frequency of the co-occurrence
between the corresponding disease and symptom. A
disease can be represented in the form of a vector on
the corresponding row.

In order to evaluate the validity of the represen-
tation of diseases by our method, we compared the
similarities between diseases, which are computed
as the cosine value between the vectors, with those
computed by using International Classification of
Disease (ICD10), which is a manually constructed
disease classification. Since diseases are classified
in a tree-like structure in ICD10, we define the dis-
tance of two disease on ICD10 as the number of
steps along the shortest path from one disease to the
other. Table 1 shows the relationship between the
distance measured on ICD10 and the average simi-
larity of vectors. The results show a clear negative

Table 1: Relationship between Distance on ICD10
and Vector Similarity

Average of
Distance on ICD10 Vector Similarity

1 0.76
2 0.45
3 0.40
4 0.33
5 0.20
6 0.15
7 0.16
8 0.17
9 0.18

Figure 2: Result of Clustering

correlation between them, which suggests that these
two data provide similar information as for the sim-
ilarity (or dissimilarity) of two diseases.

We next performed hierarchical clustering using
the average-linkage criterion. Figure 2 shows the re-
sult in the form of a visualization of the similarity
matrix. Both the rows and the columns corresond
to the diseases which are sorted in the order of the
clustering. The intensity of each point represents the
similarity of the two corresponding diseases. The
more similary they are, the brighter the point is.
Therefore, the points on the diagonal are of max-
imal intensity because every point on the diagonal
represents the similarity of identical diseases. The
vague squares scattered along the diagonal indicate
the existence of clusters of similar diseases.

A part of the clustering result is shown in Figure
3 in the form of a dendrogram. We can see that the
diseases accompanied by seizures are merged by the
clustering method.
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Figure 3: Part of Clustering Result

3.2 Extracting OMIM vs CS relationship from
OMIM

We downloaded a text-formatted OMIM file as of
August 2002, and extracted from each record the
ID, title, and the Clinical Synopsis (CS) fields.
Out of the 14,316 records, 4418 records had CS
descriptions. We selected the subset of sub-
fields for the CS field that represent affected body
parts/organs/systems and the resultant pathophysiol-
ogy (e.g. ‘Oncology’, standing for the malignancy
caused by the mutation or accompanied by the phe-
notype) for 4152 records. Using the mapping infor-
mation of monogenic diseases on the chromosomes
provided by NCBI, we identified 990 Locuslink en-
tries, or identified and located genes, causing 987 of
the diseases. Because we found that their represen-
tation seems to be controlled only loosely (e.g. there
are headings with both upper and lower case repre-
sentations), we merged the headings for the selected
sub-fields into 30 types.

To make a vector representation, we assumed that
the pattern of the clinical manifestations of diseases
could be compared in terms of how the CS cate-
gories defined here are filled. Moreover, we as-
sumed that the comparison of each CS category was
possible based on the number of descriptions in that
category. In other words, a CS category may be null,
filled with only one description, or filled with many
descriptions, and we focused on just the tendency of
descriptions distributed in the CS categories without
caring for the content of the descriptions. The vec-
tors were hierarchically clustered (Eisen, M. B. et
al., 1998), and we obtained 31 tight and large clus-
ters.

4 Application

4.1 Application of OMIM-derived disease vs
clinical manifestation table

We used the H-invitational set as the source of
13,543 gene expression profiles in human adult nor-
mal tissues. They were also clustered hierarchically
and 29 tight and large clusters were identified. We
developed a ‘cross-bar’ representation that visual-
izes the interaction between diseases and genes (Fig-
ure 4); the rows represent diseases clustered with
the patterns in affected organs/systems, while the
columns represent genes clustered with the expres-
sion profiles; these patterns are represented as col-
ored cells representing the coordinate values (for
rows) or as the stacked bars representing the relative
strength of expression (for columns). The intersec-
tion of a row and a column represents that the gene
corresponding to the column causes the disease cor-
responding to the row.

One may imagine that affected organs for a dis-
ease may match with the prominent organ in the
causing gene’s expression pattern; however, in most
of the cases, it is not true. For example, the expres-
sions cluster #21 consisting of genes almost specific
to the ‘muscle/heart’ tissue category causes diseases
not only muscles and cardiovasucular systems, but
also diseases with neurological disorders. The ex-
pression cluster #28 consisting of genes almost spe-
cific to the liver causes few diseases of the liver;
rather, they cause haematological, immunological,
neural, and cardiovascular diseases. It is of note that
genes causing neural diseases have a wide range of
expression patterns, as well as the genes causing ma-
lignancies.

4.2 Application of MEDLINE-derived disease
vs clinical manifestation table

A preliminary analysis of Figure 4 showed that with
the knowledge of disease cluster the prediction of
the gene cluster increases by 15%. This result ap-
pears not so striking. However, we noticed in the
figure that if we treat each disease cluster as one
entity, the expression patterns for the causal genes
are not randomly or equally distributed over the di-
verse ranges of expression patterns, but tend to be
aggregated on some of, if not one of, the patterns;
the extent of the aggregation seems to differ among



Figure 4: Anatomical gene expression patterns and the patterns in affected organs/systems for the
diseases caused by the genes. The rows represent the diseases and the columns represent the genes. The
squares placed at their intersections indicate that the gene causes the disease, and indicate the absolute
abundance with the intensity of the color. Genes are clustered with their expression profiles among the
tissue types, and the diseases are clustered with their patterns in affected organs/systems. The areas for tight
and large clusters for either genes or diseases are colored.

the disease clusters. This implies that diseases with
similar patterns in clinical manifestations may not
be caused by genes with similar expression patterns,
but may be caused by genes within a range of ex-
pression patterns. This property might be used to
infer a set of causative genes for diseases not shown
in the figure. As the first step, we are comparing the
disease x clinical manifestation matrix made out of
MEDLINE articles with one made from OMIM CS
field in terms of their similarity in indexing.

4.3 Flybase-derived Table and Its Application

To investigate the relationship between gene func-
tion and expression pattern of the gene, we investi-
gated association between mutant phenotype classes
of Drosophila melanogaster (fruits fly) and expres-
sion pattern of human homologues to the fly gene.

The structure, expression and function of human
genes can be studied by comparing to homologous
genes of experimental animals. The homologous
gene is defined as the gene of significant local se-
quence matching with a test sequence. The function
of experimental animal genes can be determined by

random or directed mutagenesis and experiments in
crossbreeding. Because such information can not be
acquired about human, comparison of homologues
can be a powerful tool. In addition, it is well known
that selecting candidate human disease genes by ho-
mology is often more successful using model or-
ganism than by considering human paralogs. In
this study, we used fruits fly as a model organism,
because the Drosophila has been used mutagenesis
studies extensively for many decades, and genomic
sequence data is available.

We made a correspondence table of Drosophila
mutant phenotype with the tissue distribution pat-
terns of the human homologues contained in H-
invitational data set.

To construct this table, we converted phenotypic
information of alleles in the FlyBase into a ‘Knowl-
edge matrix’.

The conversion was carried out based on “phe-
notypic class:” and “phenotype manifest in:” fea-
ture in the FlyBase allele dataset. The “phenotypic
class:” and the “phenotype manifest in:” feature



Figure 5: Association between Drosophila phenotype classes and expression patterns of human homo-
logues. We used FlyBase version 3.1 dataset for our analysis. This dataset contained 42,143 alleles. 1,168
alleles had information of MIM number of human homologues. The phenotype of alleles was classified into
11 classes. The expression pattern of each gene is shown by the stacked column representing each of 10
tissue category by different colors. Numbered boxes represent ‘tight’ clusters e1 though e29 and colored as
follows: red for ‘tissue specific’ and blue for ‘even’. The blue bars show associations between Drosophila
phenotype class and expression pattern of human homologue. The aggregation in blue bars suggests that
genes for corresponding biological functions are dense in the corresponding expression clusters.

were subcategories of “phenotypic information of
alleles”(*k) field.

Because, in the 42,143 FlyBase allele entry, only
1,168 entries were homologous to OMIM gene en-
tries(2), some “phenotypic class” of FlyBase should
be merged into larger classes for further analysis.
However description format of “phenotypic class”
and “phenotype manifest in:” was rather free and hi-
erarchical ontology was lacked. So we re-classified
the allele phenotypes into 11 major classes based on
“phenotypic class:” and “phenotype manifest in:”
feature (Figure 5). Each major class contained some
40 to 160 OMIM gene entries.

Human homologue of the Drosophila mu-
tant alleles were obtained using MIM num-
ber in a “cross-reference to non-Drosophila ho-
molog(s)/analogs”(*j) field in the FlyBase. The ho-
mologues were associated to the tissue distribution
pattern (Figure 5).

Lots of Drosophila mutant strain had been con-
structed by random or directed mutagenesis ex-
periments and many lethal alleles were known in
Drosophila. Because wild type gene products of

lethal alleles should have essential biological func-
tion, one may infer that the transcripts of such genes
may distribute evenly across the tissues. But, from
the Figure 5, we can see this is not true. The
expression pattern of Drosophila lethal allele was
widespread. That is, the expression of some lethal
gene have tissue specificity, and others have not.

In the human homologues of Drosophila mutant
alleles, few genes had endocrine/exocrine specific
and Placenta/ovary/testis specific expression pattern,
compared with others. The result was consistent
with the fact that such organ was unique to verte-
brates and mammals. We emphasize that our method
is suitable for providing a whole view and clarifying
such tendencies.

5 Future Directions

We have shown three types of seemingly qualita-
tive data represented in the text format with dif-
ferent degree of structures successfully transformed
into the array of object features, and have demon-
strated that the matrix representation gives new in-
sight into the global understanding of large-scale



measurement data and knowledge. We also pre-
sented a practical use of NLP techniques and pos-
sible targets to which the ontology of biological ob-
jects may be applied. We will test these resources
for NLP in the process of extracting more types of
relations between objects and the features.
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