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Abstract

We present a framework for efficient pars-
ing with probabilistic Head-driven Phrase
Structure Grammars (HPSG). The parser
can integrate semantic and syntactic pref-
erence into figures-of-merit (FOMs) with
the equivalence class function during
parsing, and reduce the search space by
using the integrated FOMs. This pa-
per presents a CKY algorithm with this
function and experimental results of beam
thresholding. We also present an iterative
CKY parsing for HPSG, which should fur-
ther speed up parsing in runtime.

1 Introduction

Probabilistic modeling of unification-based gram-
mars including HPSG (Pollard and Sag, 1994) has
received a great deal of attention for the last decade.
Log-linear (or Maximum Entropy) modeling pro-
vides promising framework for HPSG in terms of
estimating model parameters (Abney, 1997; Johnson
et al., 1999; Miyao et al., 2003).

The computational cost required for parsing is an-
other major concern for probabilistic HPSG. One
way to obtain the Viterbi (highest probability) parse
given a probabilistic model is to first perform pars-
ing without using probabilities, and then select the
highest probability parse by looking at every parse
result. Existing techniques to improve parsing ef-
ficiency of unification-based grammars should be
useful in the first phase (Matsumoto et al., 1983;

Maxwell and Kaplan, 1993; van Noord, 1997;
Kiefer et al., 1999; Malouf et al., 2000; Torisawa
et al., 2000; Penn and Munteanu, 2003). However,
in general we must explore an exponential search
space for selecting the best parse among the re-
sulting parses of the first phase, and an exhaustive
search is often impractical or impossible.

This paper presents a unified framework of pars-
ing to obtain the Viterbi parse given an HPSG and
its probabilistic model. We define the equivalence
class function to reduce multiple feature structures
to a single feature structure that gives the same re-
sulting figure-of-merit (FOM). With this function,
the parser can integrate semantic and syntactic pref-
erence into FOMs during parsing, and reduce the
search space by using the integrated FOMs.

We present the CKY parsing algorithm using the
equivalence class function for probabilistic HPSG.
We apply a beam thresholding technique to the pars-
ing algorithm. The performance of the parser is eval-
uated on the Penn Treebank corpus.

We also present an extension of the CKY algo-
rithm which further reduces the number of edges
using an upper bound of the FOM of the outside
Viterbi parse on each edge. This algorithm should
speed up parsing in runtime, without losing the op-
timality of the output parse.

2 Probabilistic model of HPSG

In HPSG, a small number of schemata explain gen-
eral grammatical constraints, while a large number
of lexical entries express word-specific characteris-
tics. Both schemata and lexical entries are repre-
sented by typed feature structures, and constraints
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Figure 1: HPSG parsing

represented by feature structures are checked with
unification (for details, see (Pollard and Sag, 1994)).
Figure 1 shows an example of HPSG parsing of the
sentence “Spring has come.” First, each of the lex-
ical entries for “has” and “come” is unified with a
daughter feature structure of the Head-Complement
Schema. Unification provides the phrasal sign of the
mother. The sign of the larger constituent is obtained
by repeatedly applying schemata to lexical/phrasal
signs. Finally, the parse result is output as a phrasal
sign that dominates the entire sentence.

Given set W of words and set F of feature struc-
tures, an HPSG grammar is formulated as follows.

Definition 1 (HPSG grammar) An HPSG gram-
mar is a tuple, G = 〈L,R〉, where

• L = {l = 〈w,F 〉|w ∈ W, F ∈ F} is a set of
lexical entries, and

• R is a set of grammar rules, i.e., r ∈ R is a
partial function: F × F → F .

Given a sentence, an HPSG grammar computes a set
of phrasal signs, i.e., feature structures, as a result of
parsing.

Existing studies (Abney, 1997; Johnson et al.,
1999; Miyao et al., 2003) define a probability of fea-
ture structure F with log-linear model or maximum
entropy model as follows.

Definition 2 (Probabilistic HPSG) Probability
p(F |w) of feature structure F assigned to given

sentence w is defined as follows.

p(F |w) =
1

Zw

exp

(

∑

i

λiσ(si, F )

)

Zw =
∑

F ′

exp

(

∑

i

λiσ(si, F
′)

)

where λi is a model parameter, si is a fragment of
a feature structure, and σ(si, F ) is a function to re-
turn the number of appearances of feature structure
fragment si in F .

Intuitively, a probability is defined as a normalized
product of the weights exp(λi) when fragment si ap-
pears in the feature structure F . The probability rep-
resents syntactic/semantic preference expressed in a
feature structure. For example, in the probabilis-
tic model of predicate-argument structures (Miyao
et al., 2003), si was designed to be each predicate-
argument relation.

3 CKY parsing for probabilistic HPSG

The CKY algorithm, which is essentially a bottom-
up parser, is a natural choice for non-probabilistic
HPSG parsers. Because the large portion of con-
straints is expressed in lexical entries in HPSG,
bottom-up parsers can utilize those constraints to re-
duce the search space in early stages of parsing.

For PCFG, extending the CKY algorithm to out-
put the Viterbi parse is straightforward (Ney, 1991;
Jurafsky and Martin, 2000). The parser can effi-
ciently calculate the Viterbi parse by taking the max-
imum of the probabilities of the same nonterminal
symbol in each cell.

To achieve such efficiency in CKY parsing for
probabilistic HPSG, we need a function to reduce
multiple feature structures that are equivalent in
terms of resulting FOMs to a single feature struc-
ture.

3.1 Equivalence class function

First, we define the FOM of feature structure F as

∆(F ) =
∑

i

λiσ(si, F ),

and δ(r, F1, F2) as

δ(r, F1, F2) = ∆(F ) − ∆(F1) − ∆(F2),



F = r(F1, F2),

where r is a grammar rule, and F1 and F2 are the
daughters of F .

We define equivalence class function η as a func-
tion η : F → F that satisfies the following condi-
tions for all F1, F2 and r.

Condition 1:
∃F.(F = η(r(F1, F2)) ⇔ F = η(r(η(F1), η(F2))))

Condition 2:
∃d.(d = δ(r, F1, F2) ⇔ d = δ(r, η(F1), η(F2))

The first condition guarantees that the parsing
with reduced feature structures will not overgenerate
nor undergenerate. The second assures that the FOM
computed with reduced feature structures is equiva-
lent to the original one.

If we can construct the equivalence class function
for a given grammar, we can calculate the FOM of
the mother as

∆(F ) = δ(r, η(F1), η(F2)) + ∆(F1) + ∆(F2).

This equation indicates that we can employ dynamic
programming on reduced feature structures in CKY
parsing. The remaining issue is how to construct
the equivalence class function, which depends on the
grammar and the FOM model.

Miyao et al. (2003) implicitly defined an equiv-
alence class function for predicate argument struc-
tures. In their definition, instantiated arguments
were removed from predicate argument structures
in each step of parsing, because instantiated argu-
ments were no more required for further processing
in their probabilistic model. Owing to this function,
predicate argument structures could be represented
with a compact packed structure, which allowed the
tractable estimation of model parameters. We for-
mulate their approach as an equivalence class func-
tion and state necessary conditions for the function.

3.2 CKY parsing algorithm

Figure 2 shows a CKY parsing algorithm for Prob-
abilistic HPSG. The algorithm is almost identical to
the CKY for PCFG. Note that a feature structure is
reduced by the equivalence class function just be-
fore whose FOM is compared with that of the cor-
responding feature structure which is already in the
chart.

function CKY(words, grammar)
{

# diagonal
for i = 1 to num words

foreach Fu ∈ {F |〈wi, F 〉 ∈ L}
α = log(P (Fu → wi))
F ′

u = η(Fu)
if (α > π[i, i][F ′

u]) then
π[i, i][F ′

u] = α

# the rest of the matrix
for j = 2 to num words

for i = 1 to num words-j+1
for k = 1 to j-1

foreach Fs ∈ π[i, k]
foreach Ft ∈ π[i + k, j − k]
if F = r(Fs, Ft) has succeeded

α = ∆(Fs) + ∆(Ft) + δ(r, Fs, Ft)
F ′ = η(F )
if (α > π[i, j][F ′]) then

π[i, j][F ′] = α
}

Figure 2: Pseudocode of CKY parsing for proba-
bilistic HPSG.

4 Iterative CKY parsing

When the grammar is large, we often need to fur-
ther reduce the computational cost by pruning edges
produced during parsing.

One way for pruning edges is to use a beam search
strategy, in which only the best n parses are tracked.
Roark (2001) and Ratnaparkhi (1999) applied this
technique to PCFG parsing. Another way to re-
duce the number of edges produced is to use best-
first or A* search strategies (Charniak et al., 1998;
Caraballo and Charniak, 1998; Klein and Manning,
2003). Best-first strategies produce edges that are
most likely to lead to a successful parse at each mo-
ment. While beam search and best-first strategies do
not guarantee to output the Viterbi parse, A* search
always outputs the Viterbi parse.

The iterative CKY algorithm, which is motivated
by A* parsing for PCFG, is an extension of the CKY
algorithm. It repetitively performs CKY parsing
with a threshold until the successful parse is found.
The threshold allows the parser to prune edges dur-
ing parsing, which results in efficient parsing. By
pruning edges using an upper bound of the outside
Viterbi FOM, the parser guarantees to output the
Viterbi parse.



function iterativeCKY(words, grammar, step)
{

threshold = t0
until CKY’() returns success
{

CKY’(words, grammar, threshold)
threshold = threshold - step

}
}

function CKY’(words, grammar, threshold)
{

# diagonal
for i = 1 to num words

foreach Fu ∈ {F |〈wi, F 〉 ∈ L}
α = log(P (Fu → wi))
F ′

u = η(Fu)
if (α > π[i, j][F ′

u])
β = outside(F ′

u, i, i)
if (α + β ≥ threshold)

π[i, i][F ′

u] = α

# the rest of the matrix
for j = 2 to num words

for i = 1 to num words-j+1
for k = 1 to j-1

foreach Fs ∈ π[i, k]
foreach Ft ∈ π[i + k, j − k]
if F = r(Fs, Ft) has succeeded

α = ∆(Fs) + ∆(Ft) + δ(r, Fs, Ft)
F ′ = η(F )
if (α > π[i, j][F ′]) then

β = outside(F ′, i, j)
if (α + β ≥ threshold)

π[i, j][F ′] = α
}

Figure 3: iterative CKY parsing algorithm for prob-
abilistic HPSG.

4.1 Algorithm

Figure 3 shows the algorithm of iterative CKY pars-
ing for Probabilistic HPSG.

The main function iterativeCKY(...) repetitively
calls the function CKY’(...) giving a threshold to
it until it returns a successful parse. The threshold
starts with some initial value and is decreased by a
predefined step at each iteration.

The function CKY’(...) prunes the edges that do
not satisfy the condition

αe + βe ≥ threshold, (1)

where αe is the inside Viterbi FOM1 of the edge,
1We use the term “inside (or outside) Viterbi FOM” to refer

to the FOM of the Viterbi parse inside (or outside) an edge.
Do not confuse it with the inside (or outside) probability which
refers to the “sum” of the probabilities of all possible parses

which is calculated in a bottom-up manner, and βe

is the upper bound of the outside Viterbi FOM of the
edge. Therefore, the sum of αe and βe is the highest
FOM among those of all possible successful parse
trees that contain the edge. In other words, the sum
is the most optimistic estimate.

After filling the dynamic programming table, the
algorithm checks whether the parsing has success-
fully finished by looking at the upper right corner of
the matrix. If it is, it returns success; otherwise, it
returns failure.

It should be noted that if this function returns suc-
cess, the obtained parse is optimal because pruning
is done on the most optimistic estimate. The algo-
rithm prunes only the edges that would not lead to
a successful parse within the given threshold. The
edges needed to build the optimal parse are never
pruned.

When this function returns failure, it is called
again with a relaxed threshold.

It is important that the value of βe can be com-
puted off-line. Therefore, what we need to do in
runtime is just retrieve the information from the pre-
computed table. The runtime overhead is very small.

One simple way to compute βe is calculating the
FOM of an edge by allowing the outside edges to
be ANY lexical entries. For PCFG, Klein (2003)
presented an efficient algorithm to compute outside
Viterbi probabilities in a recursive manner.

5 Experiments on beam thresholding

The CKY algorithm with the equivalent class func-
tion enables us to employ various pruning tech-
niques for efficient parsing.

Beam thresholding is a simple and effective tech-
nique to prune edges during parsing. In each cell of
the chart, it keeps only a portion of the edges which
have higher FOMs compared to the other edges in
the same cell.

This section provides the experimental results of
beam thresholding on the CKY algorithm presented
in Section 3.

5.1 Grammar and probabilistic models

The HPSG grammar used in the experiments was
constructed from the Penn Treebank (Marcus et al.,

inside (or outside) an edge.



γ phrasal category
pos part-of-speech of the head word
lc lexical entry of the head word
r schema
δ distance between the head words of daughters
pc existence of punctuation between daughters
ρ argument position in a predicate-argument structure

Table 1: Notations in the description of features

# Features Data size Estimation time
56,440 13.15 GB 110 min

Table 2: Space/computational costs of model esti-
mation

1994) by the method of Miyao et al. (Miyao et al.,
2004). The grammar acquired from Sections 02–
21 (39,598 sentences) consisted of 826 lexical entry
templates for 10,809 words. In average, 2.62 lexical
entries were assigned to a word.

The probabilistic model has two types of features:
syntactic features and semantic features. The syn-
tactic features capture the characteristics of each
branching in an HPSG derivation. Formally, a
syntactic feature represents the occurrence of the
branching 〈〈γh, posh, lch〉, 〈γn, posn, lcn〉, r, δ, pc〉,
where γh and γn are for head/non-head daughters
and other notations are represented in Table 1. The
semantic features capture the characteristics of each
predicate-argument relation, which is formally rep-
resented with 〈〈posh, lch〉, 〈posn, lcn〉, ρ, δ〉. Note
that the model treats predicate-argument structures
that can include re-entrant structures. We imple-
mented the equivalence class function similar to
the existing study on the probabilistic modeling of
predicate-argument structures (Miyao et al., 2003)

Table 2 shows the space/computational costs of
model estimation. The parameters were estimated
by using the limited-memory BFGS algorithm (No-
cedal, 1980) with a Gaussian distribution as a prior
probability distribution for smoothing (Chen and
Rosenfeld, 1999). All of the experiments were per-
formed on servers with 1.26-GHz Pentium-III CPU
and 4-GB memory.

The sentences in section 22 were used for evalu-
ation. We parsed 200 sentences that had less than
40 words and could be strictly covered by the gram-
mar (i.e., the grammar included all lexical entries to
output the correct parse for the sentence).

Parser Precision Recall Time (sec)
Baseline 86.9% 87.2% 26.64

Beam search 87.5% 83.4% 0.85

Table 3: Comparing with the baseline parser

5.2 Beam thresholding

Beam thresholding is conducted on each cell in the
CKY chart. The parser keeps only top ten edges ac-
cording to their FOMs. Additionally, it discards the
edges whose FOMs are lower than the top FOM of
the cell by 6.0 (in log-probability).

One simple way to obtain the best parse of a
sentence is to first parse the sentence without us-
ing the probabilistic model, then search the best
parse among the parse results. For comparison, we
have implemented this baseline parser with the CKY
parsing algorithm for non-probabilistic HPSG com-
bined with a CFG filtering technique (Torisawa et
al., 2000).

Table 3 shows the results. The parser with beam
thresholding achieved about 30 times speedup com-
pared with the baseline parser. The loss of recall was
3.8%.

6 Conclusion

This paper presented a framework for efficient pars-
ing with probabilistic HPSG with the equivalence
class function. The proposed framework enables us
to compute the FOMs of partial parse results during
parsing. With this function, the search space can be
significantly reduced by various pruning techniques
including beam search and best-first search strate-
gies.

We also described an iterative CKY parsing algo-
rithm for probabilistic HPSG, which can reduce the
number of edges produced during parsing without
losing the optimality of the output parse.
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