
Iterative CKY parsing for Probabilistic Context-Free Grammars

Yoshimasa Tsuruoka‡† and Jun’ichi Tsujii†‡
†Department of Computer Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
‡CREST, JST (Japan Science and Technology Agency)

Honcho 4-1-8, Kawaguchi-shi, Saitama 332-0012
{tsuruoka,tsujii}@is.s.u-tokyo.ac.jp

Abstract

This paper presents an iterative CKY pars-
ing algorithm for probabilistic context-
free grammars (PCFG). This algorithm
enables us to prune unnecessary edges
produced during parsing, which results
in more efficient parsing. Since prun-
ing is done by using the edge’s inside
Viterbi probability and the upper-bound
of the outside Viterbi probability, this al-
gorithm guarantees to output the exact
Viterbi parse, unlike beam-search or best-
first strategies. Experimental results using
the Penn Treebank II corpus show that the
iterative CKY achieved more than 60% re-
duction of edges compared with the con-
ventional CKY algorithm and the run-time
overhead is very small. Our algorithm
is general enough to incorporate a more
sophisticated estimation function, which
should lead to more efficient parsing.

1 Introduction

There are several well-established O(n3) algorithms
for finding the best parse for a sentence using prob-
abilistic context-free grammars (PCFG). However,
when the size of the grammar is large, the compu-
tational cost of O(n3) is quite burdensome. For ex-
ample, the PCFG learned from the Penn Treebank
II corpus has around 15,000 rules and the number
of edges produced for parsing a 40-word sentence
sometimes exceeds one million.

Many research efforts have been devoted to reduc-
ing the computational cost of PCFG parsing. One
way to prune the edges produced during parsing is
to use a beam search strategy, in which only the best
n parses are tracked. Roark (2001) and Ratnaparkhi
(1999) applied this technique to PCFG parsing. The
advantage of this method is that one can incorpo-
rate beam search strategies into existing parsing al-
gorithms without any significant additional process-
ing cost. However, it has a major drawback: the
Viterbi (highest probability) parse may be pruned
during parsing, so the optimality of the output is not
guaranteed.

Another way to reduce the number of edges pro-
duced is to use best-first or A* search strategies
(Charniak et al., 1998; Caraballo and Charniak,
1998; Klein and Manning, 2003). Best-first strate-
gies produce edges that are most likely to lead to
a successful parse at each moment. While best-
first strategies do not guarantee to output the Viterbi
parse, an A* search always outputs the Viterbi parse
by making use of an estimation function that gives
an upper bound of the score to build a successful
parse.

A* parsing is very promising because it can prune
unnecessary edges during parsing, while keeping the
optimality of the output parse. From an implementa-
tion point of view, however, A* parsing has a serious
difficulty. It maintains an agenda to keep edges to
be processed. The edges in the agenda are properly
scored so that an appropriate edge can be retrieved
from the agenda at any moment. One of the most
efficient ways to implement such an agenda is to use
priority queues, which requires a computational cost

of O(log(n)) at each action (Cormen et al., 2001),
where n is the number of edges in the agenda. Since
the process of retrieving and storing edges is con-
ducted in the innermost loop of the A* algorithm,
the cost of O(log(n)) makes it difficult to build a
fast parser by using the A* algorithm.

In this paper, we propose an alternative way of
pruning unnecessary edges while keeping the opti-
mality of the output parse. We call this algorithm the
iterative CKY algorithm. This algorithm is an exten-
sion of the well-established CKY parsing algorithm.
It conducts repetitively CKY parsing with a proba-
bility threshold until the successful parse is found.
It is easy to implement and the runtime overhead is
quite small. We verified its effectiveness through ex-
periments using the Penn Treebank II corpus.

This paper is organized as follows. Section 2
explains the iterative CKY parsing algorithm along
with its pseudocode. Section 3 presents experimen-
tal results using the Penn Treebank II corpus. Sec-
tion 4 offers some concluding remarks.

2 Iterative CKY parsing

The CKY algorithm is a well-known O(n3) algo-
rithm for PCFG parsing (Ney, 1991; Jurafsky and
Martin, 2000). It is essentially a bottom-up parser
using a dynamic programming table. It fills out the
probability table by induction.

The iterative CKY algorithm, which we present in
this paper, is an extension of the conventional CKY
algorithm. It repetitively conducts CKY parsing
with a threshold until the successful parse is found.
The threshold allows the parser to prune edges dur-
ing parsing, which results in efficient parsing. The
reason why we need to execute parsing repetitively
is that CKY parsing with a threshold does not nec-
essarily return a successful parse1. In such cases,
we need to relax the threshold and conduct parsing
again. When CKY does return a successful parse, it
is guaranteed to be optimal.

The details of the algorithm are described in the
following section.

1“Successful” means that the resulting parse contains S at
the root of the tree.

function iterativeCKY(words, grammar, step)
{

threshold = 0
until CKY’() returns success
{

CKY’(words, grammar, threshold)
threshold = threshold - step

}
}

function CKY’(words, grammar, threshold)
{

Create and clear π[]

diagonal
for j = 2 to num words

for A = 1 to num nonterminals
if A → wi is in grammar then

π[i, i, A] = log(P (A → wi))

the rest of the matrix
for j = 2 to num words

for i = 1 to num words-j+1
for k = 1 to j-1

for A = 1 to num nonterminals
for B = 1 to num nonterminals
for C = 1 to num nonterminals

α = π[i, k, B] + π[i + k, j − k, C]
+log(P (A → BC))

if (α > π[i, j, A]) then
β = outside(A, i, j)
if (α + β ≥ threshold) then

π[i, j, A] = α

if π[1, num words,S] has a value then
return success

else
return failure

}

Figure 1: Pseudocode of the iterative CKY parsing
algorithm. Probabilities are expressed in logarithmic
form. “S” is the non-terminal symbol corresponding
to a whole sentence. Outside(...) is the function that
returns the upper bound of the outside Viterbi log-
probability (see Section 2.2).

2.1 Algorithm

Figure 1 shows the pseudo-code of the entire algo-
rithm of the iterative CKY parsing algorithm. Note
that probabilities are expressed in logarithmic form.

The main function iterativeCKY(...) repetitively
calls the function CKY’(...) giving a threshold to
it until it returns a successful parse. The threshold
starts with zero and is decreased by a predefined step
at each iteration.

The function CKY’(...) is almost the same as the
conventional CKY algorithm. The only difference is
that it is given a threshold of log-probability and it
prunes edges that do not satisfy the condition

αe + βe ≥ threshold, (1)

where αe is the inside Viterbi log-probability2 of the
edge, which is calculated in a bottom-up manner,
and βe is the upper bound of the outside Viterbi log-
probability of the edge. Therefore, the sum of αe

and βe is the highest log-probability among those of
all possible successful parse trees that contain the
edge. In other words, the sum is the most optimistic
estimate. How to calculate βe is described in Section
2.2.

After filling the dynamic programming table, the
algorithm checks whether the non-terminal symbol
“S” is in the cell in the upper right corner of the ma-
trix. If it is, it returns success; otherwise, it returns
failure.

It should be noted that if this function returns suc-
cess, the obtained parse is optimal because pruning
is done on the most optimistic estimate. The algo-
rithm prunes only the edges that would not lead to
a successful parse within the given threshold. The
edges needed to build the optimal parse are never
pruned.

When this function returns failure, it is called
again with a relaxed threshold.

It is important that the value of βe can be com-
puted off-line. Therefore, what we need to do in
runtime is just retrieve the information from the pre-
computed table. The runtime overhead is very small.

2In this paper, we use the term “inside (or outside) Viterbi
probability” to refer to the probability of the Viterbi parse in-
side (or outside) an edge. Do not confuse it with the inside (or
outside) probability which refers to the sum of the probabilities
of all possible parses inside (or outside) an edge.

Table 1: Example of log-probability threshold and
the number of edges. The log-probability of the sen-
tence is -62.34.

Log-probability Number of Parse result
threshold edges

0 0 failure
-10 0 failure
-20 0 failure
-30 22 failure
-40 594 failure
-50 4,371 failure
-60 16,080 failure
-70 38,201 success

Total 59,268

Normal CKY 110,441 success

It might seem wasteful to iteratively perform
CKY parsing until a successful parse is found.
Somewhat counterintuitively, however, the waste is
not very problematic. Although the first few at-
tempts come to nothing, the total number of edges
produced to give a successful parse is smaller than
for normal CKY in most cases. Table 1 shows an ex-
ample of iterative CKY parsing. Each row shows the
number of edges and the parsing result. The parser
conducted seven iterations until it finally obtained
a successful parse. Thus the edges produced dur-
ing the first six trials were wasted. However, since
the number of edges increases exponentially as the
threshold decreases in a constant step, the number of
the wasted edges is relatively small.

The point is that we do not know the log-
probability of the successful parse of a sentence in
advance. If we did, setting the threshold to that log-
probability would result in maximum pruning, be-
cause the tighter the threshold is, the more edges
we can prune. In preliminary experiments, we tried
to estimate the log-probability of a sentence using
its length in order to reduce the number of wasted
edges, but we did not have much success. In this
paper, therefore, we take the simple strategy of de-
creasing by a constant step from the threshold at
each iteration.

S

PP , NP VP .

VBDJJIN NP DT NN

NP? ? ? ? ? ? ?

Most
Optimistic
Tree

Log-Probability -11.3

Summary (1, 6, NP)

Figure 2: Context summary estimate (Klein and
Manning, 2003)

2.2 Upper bound of outside Viterbi probability

There are many ways to calculate the upper bound of
the outside Viterbi probability of the edge, depend-
ing on how much contextual information we specify.
In this work, we use context summary estimates pro-
posed by Klein (2003).

Figure 2 shows an example, where the edge is NP.
In this case, the context summary is that NP has one
word on the left and six on the right. The tree is the
most optimistic tree, meaning that it has the highest
probability among all possible trees that conform to
this context summary. This estimate can be calcu-
lated efficiently in a recursive manner. For details
of how to compute this estimation, see (Klein and
Manning, 2003).

The estimates for all possible combinations of
lspan (the number of words on the left), rspan (the
number of words in the right), and symbols in the
grammar are computed in advance. The memory
size required for storing this information is

(number of symbols) ×
(max sentence length)2

2
.

(2)
For instance, the number of symbols in the set of

binarized rules learned from the Penn Treebank is
12,946. If we parse maximum-40-word sentences,
the memory required is about 80 MB (assuming that
the size of each entry is 8 bytes).

We can use richer contexts for the upper bound
of outside Viterbi probabilities. It is a trade-off be-
tween time and space. By using a richer context, we
can obtain tighter upper bounds, which lead to more
pruning. However, more space is required to store
the estimates.

3 Experiment

To evaluate the effectiveness of the proposed algo-
rithm, we conducted experiments using the Penn
Treebank II corpus (Marcus et al., 1994), which is
a syntactically annotated corpus in English.

3.1 Binarization

Since all rules in the grammar must be either unary
or binary in CKY parsing3, we binarized the rules
that have more than two symbols on the right side in
the following way.

• Create a new symbol which corresponds to the
first two symbols on the right.

• The probability of the newly created rule is 1.0

This process is repeated until no rule has more
than two symbols on the right side.

For example, the rule
NP → DT JJ NN (0.3)

is decomposed into the following two rules.
NP → XDTJJ NN (0.3)
XDTJJ → DT JJ (1.0)
The probability distribution over the transformed

grammar is equivalent to the original grammar. It is
easy to convert a parse tree in the transformed gram-
mar into the parse tree in the original grammar.

3.2 Corpus and grammar

Following (Klein and Manning, 2003), we parsed
sentences of length 18-26 in section 22. The gram-
mar used for parsing was learned from section 2 to
21.

We discarded all functional tags attached to non-
terminals and traces, which are labeled “-NONE-”,
in the Treebank. The grammar learned had 14,891
rules in the original form. We binarized them and
obtained 27,854 rules.

3.3 Step of threshold decrease

We first conducted experiments to estimate the opti-
mal step of threshold decrease using a held-out set.
The held-out set was created from the first 10% of
section 22. The remaining sentences in the section
were reserved for the test set.

3Strictly speaking, the original CKY algorithm requires all
the rules to be binary. We used a slightly extended version of
the CKY algorithm which can deal with unary rules.

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

4.5e+06
5e+06

0 5 10 15 20 25

N
um

be
r

of
 E

dg
es

Step of Decrease (log-probability)

Figure 3: The step of decrease in log-probability
threshold and the total number of edges.

0

20

40

60

80

100

120

140

0 5 10 15 20 25

T
im

e
(s

ec
)

Step of Decrease (log-probability)

Figure 4: The step of decrease in log-probability
threshold and the total time.

Table 2: The number of edges produced for parsing
first several sentences in the test set.

Sentence Normal Iterative
length CKY CKY Ratio

19 68,366 16,343 0.24
19 69,979 4,194 0.06
24 96,185 45,232 0.47
21 110,926 15,220 0.14
23 115,296 85,634 0.74
23 102,797 18,393 0.18
25 165,564 109,002 0.66
20 86,454 21,622 0.25
22 71,797 33,819 0.47
26 127,250 62,834 0.49
: : : :

Figure 3 shows the relationship between the step
of threshold decrease and the total number of edges
for parsing the held-out set. The best efficiency was
achieved when the step was 11. The curve in the fig-
ure indicates that the efficiency is not very sensitive
to the step when it is around the optimal point.

Figure 4 shows the relationship between the step
and the time taken for parsing the held-out set 4. The
best setting was again 11.

3.4 Evaluation

We evaluated the efficiency of the parser on the test
set. The step of threshold decrease was set to 11,
which was determined by using the held-out set as
described above.

Table 2 shows the number of edges produced for
parsing the first several sentences in the test set.
There were a few sentences for which the iterative
CKY produced more edges than the normal CKY. In
most cases, however, the number of edges produced
by the iterative CKY was significantly smaller than
that produced by the normal CKY.

Table 3 shows the the total number of edges and
the total time required for parsing the entire test set.
The number of edges produced by the iterative CKY
was 39% of that by the normal CKY. This is a sig-
nificant reduction in computational cost. As for the
parsing time, the iterative CKY is almost twice as

4The experiments were conducted on a server having a Xeon
3.06 GHz processor and 1 GB of memory

Table 3: Performance on the test set.

Number of edges Time (sec)
Normal CKY 45,406,084 1,164
Iterative CKY 17,520,427 613

Table 4: Simulating ideal cases.

Number of edges Time (sec)
Ideal CKY 7,371,359 260

fast as the normal CKY. This result indicates that the
run-time overhead of iterative CKY is quite small.

3.5 Simulating ideal cases

Klein et al. (2003) reported more than 80% reduc-
tion of edges using the same estimate under the A*
search framework. Our reduction ratio is not as
good as theirs, probably because our algorithm has
to make several attempts that fail and the edges pro-
duced during those attempts are wasted.

In this work, we used a simple strategy of decreas-
ing the threshold by a constant step at each iteration.
It would be interesting to know how much we can
further improve the efficiency by sophisticating the
way of giving the threshold to the parser.

We simulated the ideal cases, where we knew the
sentence probability in advance, by giving the parser
the threshold that is exactly equal to the sentence
log-probability. The number of edges and the total
time for parsing the entire test set by the ideal parser
are shown in Table 4. The results suggest that de-
veloping a method for estimating the probability of
a sentence in advance should further improve the ef-
ficiency of the iterative CKY.

4 Conclusion

This paper presented an efficient and easy-to-
implement iterative CKY parsing algorithm for
PCFG. This algorithm enables us to prune unneces-
sary edges produced during parsing, which results in
more efficient parsing. Since the run-time overhead
of our algorithm is very small, it runs faster than the
conventional CKY algorithm in an actual implemen-
tation.

Our algorithm is general enough to incorpo-
rate more sophisticated estimates of outside Viterbi

probabilities, which should lead to more efficient
parsing.

4.1 Future work

We used the simplest context summary estimate as
the upper bound of outside Viterbi probabilities in
this paper. Since tighter bounds would lead to more
reduction of edges, it is worth investigating the use
of other estimation methods.

References

Sharon A. Caraballo and Eugene Charniak. 1998. New
figures of merit for best-first probabilistic chart pars-
ing. Computational Linguistics, 24(2):275–298.

Eugene Charniak, Sharon Goldwater, and Mark Johnson.
1998. Edge-based best-first chart parsing. In Proceed-
ings of the Sixth Workshop on Very Large Corpora.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. 2001. Introduction to Al-
gorithms. The MIT Press.

Dainiel Jurafsky and James H. Martin. 2000. Speech and
Language Processing. Prentice Hall.

Dan Klein and Christopher D. Manning. 2003. A* pars-
ing: Fast exact viterbi parse selection. In Proceedings
of the HLT-NAACL, pages 119–126.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics, 19(2):313–330.

H. Ney. 1991. Dynamic programming parsing for
context-free grammars in continuous speech recog-
nition. IEEE Transactions on Signal Processing,
39(2):336–340.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models. Machine
Learning, 34(1-3):151–175.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

